Supporting Information for

Probing the Closed Association of Oligoquinoline Foldamers

by Time-Resolved Fluorescence Anisotropy

Kristijan Lulic,^b Jingqi Wang,^bXuesong Li,^a Nagula Markandeya,^a Ivan Huc,^{c,*} Victor

Maurizot,^{a,*} and Jean Duhamel^{b,*}

- ^{a.} Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France. E.mail : <u>victor.maurizot@u-bordeaux.fr</u>
- ^{b.} Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada. E. mail : jduhamel@uwaterloo.ca
- ^c Department Pharmazie, Ludwig-Maximilians-Universität München, Butenandtstraße 5–13, D-81377 Munich, Germany. E-mail: ivan.huc@cup.lmu.de

Table of Content

A]	Fluorescence decays used in the TRFA experiments	S3-S4
B]	Determination of the equilibrium constant for the complexation of the oligoquuinoline	;
	foldamers	S5
C]	Parameters retrieved from the fluorescence decay analysis	S6-S11
D]	Derivation for the expression for the average rotational time $\langle \phi \rangle$ in Equation 11 S	12-S13

A] Fluorescence decays used in the TRFA experiments

Figure S1. Fluorescence decays for OPV-labeled octamer in chloroform (with residuals and autocorrelation of the residuals) acquired with vertically polarized light at 479 nm and with the emission at 510 nm obtained with the emission polarizer placed A) at the magic angle ($I_{VM}(t)$), B) vertically ($I_{VV}(t)$), and C) horizontally ($I_{VH}(t)$).

Figure S2. Fluorescence decays for OPV-labeled octamer in chloroform after the addition of 0.1 mL of 16 M NaOH aqueous solution (with residuals and autocorrelation of the residuals) acquired with vertically polarized light at 479 nm and with the emission at 510 nm obtained with the emission polarizer placed A) at the magic angle ($I_{VM}(t)$), B) vertically ($I_{VV}(t)$), and C) horizontally ($I_{VH}(t)$).

B] Determination of the equilibrium constants for the complexation of the oligoquinoline foldamers

Figure S3. Plots of χ^2 as a function of $log_{10}(K)$ for the dimerization of A) OPV-Q₄A, B) OPV-Q₈A, C) OPV-Q₁₇A, and D) OPV-Q₃₃A, and E) the complexation of OPV-Q₈A with Q₃₃A. The χ^2 -vs- $log_{10}(K)$ plots were fitted with third order polynomials yielding K_n values of 1.1 (±0.1)×10⁵ M⁻¹, 1.1 (±0.2)×10⁶ M⁻¹, 7.8 (±0.4)×10⁵ M⁻¹, and 1.10 (±0.03)×10⁶ M⁻¹ and a K_c (= K_p) value of 7.5 (±0.1)×10⁵ M⁻¹ at their minimum, respectively.

C] Parameters retrieved from the fluorescence decay analysis

Table S1. Parameters obtained from the global analysis of $I_{VV}(t)$ and $I_{VH}(t)$ for the protonated OPV-Q₄A samples in chloroform.

	mexp	scatbg		anis	so01d-e	xtension		
Concentration (µM)	$\begin{array}{c c} \tau_{\rm o} \\ (\rm ns) \end{array} \chi^2$		τ _o (ns)	r _o	ϕ (ns)	χ^2	G-factor	extension
0.10	1.71	1.05	1.71	0.378	0.59	0.99	0.46	7k
0.76	1.71	1.03	1.71	0.391	0.59	1.00	0.46	7k
2.51	1.71	1.05	1.71	0.388	0.59	1.02	0.46	4k
5.60	1.70	1.04	1.70	0.387	0.58	1.06	0.46	4k
40.6	1.71 1.01		1.71	0.386	0.58	1.13	0.46	4k
681	1.83	1.04	1.85	0.310	0.60	1.15	0.54	4k

Table S2. Parameters obtained from the global analysis of $I_{VV}(t)$ and $I_{VH}(t)$ for the OPV-Q₄A samples in chloroform after addition of 0.1 mL of 16 M NaOH aqueous solution.

	mexp	scatbg		ani	so01d-ex	tension		
Concentration (µM)	τ_{o} (ns)	χ²	τ_{o} (ns)	r _o	ϕ (ns)	χ^2	G-factor	extension
0.3	0.3 1.71		1.72	0.377	0.57	1.01	0.47	4k
0.7	1.72	1.11	1.72	0.397	0.58	1.01	0.47	4k
1.3	1.72	1.09	1.72	0.392	0.58	0.99	0.47	4k
2.8	1.72	1.03	1.72	0.384	0.60	1.00	0.47	4k
6.3	1.70	1.13	1.70	0.294	0.73	1.15	0.51	7k
33	1.72	1.02	1.72	0.248	0.86	1.05	0.55	7k
170	1.77	1.09	1.78	0.187	0.94	0.99	0.63	4k
313	313 1.81 1		1.83	0.166	0.99	1.10	0.66	4k
532	1.83	0.99	1.85	0.171	0.97	1.10	0.65	4k
681	1.84	1.06	1.85	0.179	0.98	1.01	0.64	4k

Table S3. Parameters obtained from the global analysis of $I_{VV}(t)$ and $I_{VH}(t)$ for the protonated OPV-Q₈A samples in chloroform.

	mexps	catbg		anis	o01d-ex	tension	l	
Concentration (µM)	$\begin{array}{c c} \tau_{o} \\ (ns) \end{array} \chi^{2}$		$\begin{array}{c} \tau_{o} \\ (ns) \end{array}$	r _o	φ (ns)	χ²	G-factor	extension
0.041	1.60 1.04		1.60	0.398	0.82	1.16	0.44	7k
0.184	1.57	1.07	1.57	0.335	0.76	1.03	0.51	7k
1.12	1.57	1.16	1.57	0.325	0.77	1.07	0.50	7k
4.99	1.59	1.02	1.59	0.374	0.78	1.08	0.45	7k
52.7	1.60	1.04	1.60	0.391	0.77	0.99	0.45	7k
296	1.66 1.11		1.66	0.307	0.80	1.04	0.51	4k

Table S4. Parameters obtained from the global analysis of $I_{VV}(t)$ and $I_{VH}(t)$ for the OPV-Q₈A samples in chloroform after addition of 0.1 mL of 16 M NaOH aqueous solution.

	mexp	scatbg		anise	o01d-ex	tension	l	
Concentration (uM)	τ_{o} (ns)	χ²	τ_{o} (ns)	r _o	ϕ (ns)	χ²	G-factor	extension
0.013	1.61	1.14	1.61	0.376	0.77	1.16	0.42	7k
0.046	1.60	1.07	1.60	0.328	0.77	1.12	0.49	7k
0.077	1.60	1.06	1.60	0.315	0.83	1.20	0.49	7k
0.2378	1.59	1.05	1.59	0.384	0.90	1.07	0.42	7k
0.458	1.59	1.19	1.59	0.327	1.01	1.21	0.43	7k
0.558	1.60	1.06	1.60	0.363	1.02	1.03	0.43	7k
1.12	1.59	1.15	1.59	0.292	1.08	1.26	0.50	7k
4.74	1.58	1.08	1.58	0.355	1.16	1.08	0.42	7k
62.3	1.61	1.04	1.61	0.350	1.30	1.09	0.42	4k
101	1.63	1.12	1.63	0.300	1.37	1.18	0.47	7k

Table S5. Parameters obtained from the global analysis of $I_{VV}(t)$ and $I_{VH}(t)$ for the protonated OPV-Q₁₇A samples in chloroform.

	mexps	scatbg		anisc	01d-ex	tension		
Concentration (µM)	$\begin{array}{c c} \tau_{\rm o} \\ (\rm ns) \end{array} \chi^2$		τ _o (ns)	r _o	φ (ns)	χ^2	G-factor	extension
0.035	1.57	1.07	1.58	0.367	1.30	0.99	0.41	7k
0.186	1.57	1.06	1.57	0.369	1.28	1.08	0.41	7k
1.54	1.57	0.98	1.57	0.366	1.28	1.06	0.41	4k
6.80	1.58	0.99	1.57	0.361	1.28	1.07	0.41	4k
70.3	1.60 1.09		1.63	0.277	1.30	1.08	0.50	4k
379	1.70	1.02	1.71	0.281	1.30	1.12	0.49	4k

Table S6. Parameters obtained from the global analysis of $I_{VV}(t)$ and $I_{VH}(t)$ for the OPV-Q₁₇A samples in chloroform after addition of 0.1 mL of 16 M NaOH aqueous solution.

	mexps	catbg		anis	so01d-e	xtension		
Concentration (uM)	τ_0	χ²	τ_0	r _o	ϕ (ns)	χ^2	G-factor	extension
0.035	1.59	1.08	1.59	0.373	1.26	1.02	0.41	4k
0.057	1.60	1.05	1.59	0.365	1.28	0.99	0.42	4k
0.088	1.58	1.07	1.58	0.368	1.31	1.05	0.43	7k
0.185	1.58	1.02	1.58	0.359	1.38	1.05	0.38	7k
0.373	1.58	1.06	1.58	0.339	1.51	1.06	0.41	7k
1.65	1.58	1.05	1.58	0.322	1.77	1.05	0.44	7k
3.19	1.57	1.10	1.57	0.321	1.95	1.10	0.44	7k
8.70	1.58	0.96	1.58	0.323	2.09	1.10	0.42	7k
17.5	1.59	1.15	1.59	0.326	2.20	1.08	0.42	7k
36.9	1.60	0.99	1.60	0.318	2.30	1.07	0.41	7k
69.2	1.59	1.06	1.63	0.241	2.41	1.03	0.52	4k
97.4	1.60	1.10	1.65	0.244	2.51	1.07	0.53	4k
137	1.63	1.07	1.67	0.245	2.51	1.16	0.51	4k
314	1.66	1.00	1.69	0.252	2.45	1.08	0.51	4k

Table S7. Parameters obtained from the global analysis of $I_{VV}(t)$ and $I_{VH}(t)$ for the OPV-Q₃₃A samples in chloroform.

	mexp	scatbg		aniso	o01d-ex	tension	l	
Concentration (µM)	$\begin{array}{c} \tau_{o} \\ (ns) \end{array}$	χ^2	τ _o (ns)	r _o	φ (ns)	χ^2	G-factor	extension
0.053	1.59	0.98	1.59	0.323	2.33	1.03	0.43	7k
0.810	1.59	1.05	1.59	0.325	2.08	1.09	0.43	7k
11.3	1.58	1.05	1.58	0.332	2.27	1.09	0.43	7k
190	1.61	1.05	1.64	0.245	2.10	1.10	0.52	7k

Table S8. Parameters obtained from the global analysis of $I_{VV}(t)$ and $I_{VH}(t)$ without r_{∞} for the OPV-Q₃₃A samples in chloroform after addition of 0.1 mL of 16 M NaOH aqueous solution.

	mexp	scatbg				an	iso0X-	ext			
Conc.	το	or ²	το	14	ϕ_1	14 -	ϕ_2	<\$	G-	~ ²	X-ext.
(µM)	(ns)	X	(ns)) ' ⁰¹ (ns)		/ ₀₂	(ns)	(ns)	factor	χ	
0.025	1.59	0.96	1.59	0.316	2.26	0.000	0.00	2.26	0.42	0.99	1 d- 7k
0.053	1.61	1.00	1.61	0.318	2.31	0.000	0.00	2.31	0.43	1.02	1 d- 7k
0.446	1.61	1.09	1.61	0.287	3.18	0.070	0.79	2.71	0.42	1.06	2d-3k
2.07	1.61	0.99	1.61	0.265	3.77	0.065	0.50	3.12	0.42	1.03	2d-3k
5.49	1.59	1.00	1.59	0.283	4.31	0.087	0.81	3.49	0.38	1.12	2d-3k
11.0	1.59	1.12	1.59	0.270	5.51	0.112	0.74	4.12	0.34	1.10	2d-3k
33.0	1.61	0.97	1.61	0.216	5.15	0.069	0.65	4.06	0.46	1.01	2d-3k

Table S9. Parameters obtained from the global analysis of $I_{VV}(t)$ and $I_{VH}(t)$ with r_{∞} for the OPV-Q₃₃A samples in chloroform after

		ł	pexpscatb	aniso02d-4k											
Concentration	$\tau_{o1}(ns)$	a_1	τ_{o2}	a ₂	χ^2	τ_{o} (ns)	ϕ_l	r_1	ϕ_2	r_2	r_{∞}	ϕ_{total}	r _o	G	χ^2
(µM)			(ns)				(ns)		(ns)			(ns)		factor	
61.1	1.47	0.58	1.76	0.42	1.04	1.60	5.77	0.192	0.72	0.071	0.005	4.40	0.27	0.49	1.08
79.6	1.16	0.15	1.65	0.85	0.941	1.61	5.80	0.207	0.61	0.070	0.074	4.49	0.35	0.39	1.05
262	1.63	0.77	1.80	0.23	1.01	1.67	5.06	0.197	0.87	0.033	0.170	4.46	0.40	0.33	1.13

addition of 0.1 mL of 16 M NaOH aqueous solution.

Conc	entrations	(µM)	mexp	scatbg		aniso	01d-exte	nsion		
[acid] (µM)	[OQ ₈ A] (µM)	[Q ₁₆ A] (µM)	τ_{o} (ns)	χ^2	$\begin{array}{c} \tau_{o} \\ (ns) \end{array}$	r _o	φ (ns)	χ²	G- factor	ext.
0.087	0.012	0.075	1.59	1.16	1.59	0.339	0.77	1.19	0.50	7k
1.32	0.196	1.12	1.59	1.00	1.59	0.382	0.78	1.04	0.44	7k
12.6	1.90	10.7	1.59	0.93	1.59	0.373	0.80	0.98	0.43	7k
516	434	82.2	1.61	1.13	1.63	0.311	0.82	1.05	0.49	4k

Table S10. Parameters obtained from $I_{VM}(t)$ with in1xpscbgk and the global analysis of $I_{VV}(t)$ and $I_{VH}(t)$ with inaniso01d7k for OPV-Q₈A and Q₁₆A sample mixtures in chloroform.

Table S11. Parameters obtained from the global analysis of $I_{VV}(t)$ and $I_{VH}(t)$ for the OPV-Q₈A

and $Q_{16}A$ samples in chloroform after addition of 0.1 mL of 16 M NaOH aqueous solution.

Conc	entrations	(µM)	mexps	scatbg		aniso	01d-exte	nsion		
[acid] (µM)	[OQ ₈ A] (µM)	[Q ₁₆ A] (µM)	τ_{o} (ns)	χ^2	$\begin{array}{c} \tau_{o} \\ (ns) \end{array}$	r _o	φ (ns)	χ^2	G- factor	ext.
0.040	0.0046	0.0311	1.62	1.13	1.62	0.398	0.83	1.11	0.42	7k
0.100	0.0127	0.0855	1.62	1.06	1.62	0.369	0.84	1.13	0.44	7k
0.140	0.0182	0.122	1.61	1.09	1.61	0.384	0.81	1.08	0.44	7k
0.230	0.0330	0.195	1.60	1.07	1.60	0.367	0.85	1.21	0.43	4k
0.650	0.0975	0.554	1.60	1.03	1.60	0.348	1.02	1.02	0.44	7k
1.32	0.196	1.12	1.61	1.17	1.61	0.341	1.09	1.19	0.44	7k
4.24	0.636	3.60	1.60	1.15	1.60	0.338	1.18	1.18	0.43	7k
46.9	7.70	39.2	1.60	1.09	1.62	0.270	1.33	1.07	0.47	4k
82.5	13.7	68.8	1.59	1.22	1.62	0.278	1.46	0.97	0.49	4k
160	27.2	133	1.58	1.10	1.62	0.275	1.67	1.05	0.43	4k
558	96.9	461	1.62	1.04	1.64	0.286	1.63	1.10	0.48	4k
937	156	781	1.67	1.10	1.69	0.284	1.66	1.04	0.50	4k

D] Derivation for the expression for the average rotational time $\langle \phi \rangle$ in Equation 11:

Equations S1 and S2 describe the contribution from the OPV-Q_nA unimers (OQ_n) and dimers $((OQ_n)_2)$ to the $I_{VV}(t)$ fluorescence decays. The first sum of exponentials with the b_j preexponential factors and τ_j decay times represents the fluorescence decay of the OPV dye which is the same for the unimers and dimers and was defined in Equation 3. The indices *M* and *E* in Equations S1 and S2 indicate whether a parameter is attributed to a unimer or a dimer, respectively. The other parameters r_0 , a_i , and f_i were defined in Equation 6.

$$[OQ_n]_{(t)}^{VV} = [OQ_n]_o \sum_{j=1}^p b_j \exp(-t/\tau_j) \times \left[1 + 2r_{o,M} \sum_{i=1}^{nM} a_{i,M} \exp(-t/\phi_{i,M})\right]$$
(S1)

$$[(OQ_n)_2]_{(t)}^{VV} = [(OQ_n)_2]_o \sum_{j=1}^p b_j \exp(-t/\tau_j) \times \left[1 + 2r_{o,D} \sum_{i=1}^{nD} a_{i,D} \exp(-t/\phi_{i,D})\right]$$
(S2)

Considering that an OQ_n unimer and an $(OQ_n)_2$ dimer contribute, respectively, one and two OPV dyes to the total dye concentration, the $I_{VV}(t)$ decay would be represented by Equation S3.

$$I_{VV}(t) = [OQ_n]_{(t)}^{VV} + 2 \times [(OQ)_2]_{(t)}^{VV}$$
(S3)

Equation S3 can be expanded into Equation S4, where w_M and w_D are the weight fractions of the OQ_n unimer and $(OQ_n)_2$ dimers, respectively, r_o is the average initial anisotropy equal to $w_M r_{o,M} + w_D r_{o,D}$, and all the other parameters were defined earlier.

$$I_{VV}(t) = [OQ_n]_o \sum_{j=1}^p b_j \exp(-t/\tau_j) \times \left[1 + 2r_o \left(\frac{r_{o,M} w_M}{r_o} \sum_{i=1}^{nM} a_{i,M} \exp(-t/\phi_{i,M}) + \frac{r_{o,D} w_D}{r_o} \sum_{i=1}^{nD} a_{i,D} \exp(-t/\phi_{i,D}) \right) \right]$$
(S4)

A similar procedure can be applied to yield Equation S5 to represent the $I_{VH}(t)$ fluorescence decay.

$$I_{VH}(t) = [OQ_n]_o \sum_{j=1}^p b_j \exp(-t/\tau_j) \times \left[1 - r_o \left(\frac{r_{o,M} W_M}{r_o} \sum_{i=1}^{nM} a_{i,M} \exp(-t/\phi_{i,M}) + \frac{r_{o,D} W_D}{r_o} \sum_{i=1}^{nD} a_{i,D} \exp(-t/\phi_{i,D}) \right) \right]$$
(S5)

Equation S6 provides the anisotropy of the OQ_n and $(OQ_n)_2$ mixture, which is a sum of exponentials that can be represented by Equation 6.

$$r(t) = r_o \left(\frac{r_{o,M} w_M}{r_o} \sum_{i=1}^{nM} a_{i,M} \exp(-t / \phi_{i,M}) + \frac{r_{o,D} w_D}{r_o} \sum_{i=1}^{nD} a_{i,D} \exp(-t / \phi_{i,D}) \right) = r_o \sum_{i=1}^{n} a_i \exp(-t / \phi_i)$$
(S6)

The average rotational time ($\langle \phi \rangle$) is obtained by integrating Equation S6 from 0 to infinity as shown in Equation S7, where ϕ_1 and ϕ_2 are the number average rotational times of the unimers and dimers, respectively.

$$<\phi>=\int_{0}^{\infty}r(t)dt=\frac{r_{o,M}W_{M}}{r_{o}}\sum_{i=1}^{nM}a_{i,M}\phi_{i,M}+\frac{r_{o,D}W_{D}}{r_{o}}\sum_{i=1}^{nD}a_{i,D}\phi_{i,D}=\frac{r_{o,M}[OQ_{n}]\phi_{1}+2\times r_{o,D}[(OQ_{n})_{2}]\phi_{2}}{r_{o}([OQ_{n}]+2[(OQ_{n})_{2}])}$$
(S7)

Assuming that the unimers and dimers share a similar initial anisotropy ($r_0 = r_{0,M} = r_{0,D}$), Equation S7 simplifies to yield Equation S8, which is the same as Equation 11 in the main text. In Equation S8, $[OQ_n]_0$ is the total concentration of free or complexed OQ_n molecules in the solution.

$$\langle \phi \rangle = \frac{[OQ_n]\phi_1 + 2 \times [(OQ_n)_2]\phi_2}{[OQ_n]_o}$$
(S8)