Chemistry–A European Journal

Supporting Information

Optimization and Automation of Helical Aromatic Oligoamide Foldamer Solid-Phase Synthesis

Valentina Corvaglia, Florian Sanchez, Friedericke S. Menke, Céline Douat, and Ivan Huc*

Content

1.	Materials and Methods						
	1.1.	Methods for RP-HPLC analysis	2				
1.2.		Methods for NMR analysis					
	1.3.	Methods for LC-ESI-MS analysis	2				
2.	Ex	perimental section	3				
	2.1.	Manual microwave-assisted SPFS of foldamers 1-4	3				
	2.2.	Manual microwave-assisted SPFS of foldamers 5-7	5				
	2.3.	Automation of the SPFS of foldamers 8-9	6				
	2.4.	Setting up the Chorus PurePep ${ m I\!R}$ synthesizer for SPFS	7				
	2.5.	Synthesis of Ylide 10 in solution	11				
	2.6.	Regeneration of Fmoc-L-OH from 10	11				
3.	Cł	naracterization of foldamers	11				
	3.1.	HPLC chromatograms of crude foldamers	11				
	3.2.	HPLC chromatograms of pure foldamers	13				
	3.3.	¹ H NMR spectra of pure foldamers	15				
	3.4.	Mass spectrometry analysis of pure foldamers	19				
	3.5.	Mass spectrometry analysis of crude foldamers 8-9	23				
4.	Sy	nthesis and Characterization of ylide 10	24				
5.	Cr	Crystal structure of isolated ylide 1027					
6.	Cł	Characterization of the N,N-dimethyl-N-(quinolin-8-yl)isobutyramidine					

1. Materials and Methods

Chemicals and reagents were used as commercially supplied without any further purification unless otherwise stated. Low loading Wang resin (0.41 mmol/g) was purchased from Novabiochem. Ghosez reagent (1-chloro-*N*,*N*,2-trimethyl-1 propenylamine) was purchased from Sigma Aldrich. *N*,*N*-diisopropylethylamine (DIPEA) was distilled over calcium hydride. Reactions requiring anhydrous conditions were performed under nitrogen. Quinoline monomers (O), (D, D'), and (L) were synthesized following procedures reported previously by our group.^[1]

Analytical grade organic solvents were used for solid phase synthesis. Anhydrous THF and CH₂Cl₂ for solid phase synthesis were dispensed from an MBRAUN SPS-800 solvent purification system. Peptide synthesisgrade DMF was purchased from Carlo Erba and NMP from IRIS Biotech. HPLC grade acetonitrile and MilliQ water were used for RP-HPLC analyses and purification. RP-HPLC analyses were performed at 1.0 mL.min⁻¹ by using a Macherey–Nagel Nucleodur C18 HTec column (4 x 100 mm, 5 µm). The mobile phase was composed of 0.1% (v/v) TFA/H₂O (solvent A) and 0.1% TFA/CH₃CN (solvent B). Monitoring was performed by UV detection at 214, 254 and 300 nm with a diode array detector. Semi-preparative RP-HPLC purifications of oligomers were performed at 5 mL.min⁻¹ by using a Macherey-Nagel Nucleodur C18 HTEC column (10 x 125 mm, 5 µm). The mobile phase was the same as for the analytic inJections. Monitoring was performed by UV detection at 300 nm.

NMR spectra were recorded on Avance III NMR spectrometer (Bruker Biospin) with a vertical 16.45 T narrowbore/ultrashield magnet operating at 700 MHz for ¹H observation by means of a 5-mm TXI ¹H/¹³C/¹⁵N probe with single axis Z-gradient capabilities. Chemical shifts are reported in ppm and are calibrated against residual solvent signal of DMSO-d₆ (δ 2.50). Data processing was performed with Bruker TOPSPIN 2.1 software.

LC-ESI-MS spectra were recorded on Agilent Technologies 6230 Time of Flight LC/MS for foldamers **1-7.** The analyses were performed at 0.4 mL.min⁻¹ by using a Macherey–Nagel Nucleoshell C18 RP 18plus column (2 x 50 mm, 2.7 μ m). 0.1% formic acid was added to the aqueous mobile phase (solvent A) and acetonitrile (solvent B). The column eluent was monitored by UV detection at 214, 254, and 300 nm with a diode array detector. LC-ESI-MS spectra of foldamers **8** and **9** were recorded on a Bruker microTOF II in positive ionization mode. The HPLC line was an Ultimate 3000 RP-HPLC System (ThermoFisher Scientific) equipped with a Nucleodur C18 Gravity column (2 x 50 mm, 1.8 μ m, Macherey-Nagel) at a flow rate of 0.33 ml.min⁻¹ with the same set of solvents and UV detection mode to the previous analyses.

1.1. Methods for RP-HPLC analysis

Solutions of foldamers **1-9** (100 μ M) were prepared in a mixture of 0.1% (v/v) TFA/H₂O and 0.1% TFA/CH₃CN. HPLC chromatograms of crude and pure oligomers were recorded at r.t.

1.2. Methods for NMR analysis

Solutions of foldamers **1-7** (1 mM) were prepared in DMSO-d₆ (99.9%). ¹H NMR spectra were recorded at 333 K using a water suppression sequence (watergate).

1.3. Methods for LC-ESI-MS analysis

LC-ESI-MS experiments were performed in positive ion mode. Solutions of oligomers **1-9** were prepared in a mixture of 0.1% (v/v) formic acid in H₂O (solvent A) and 0.1% formic acid in CH₃CN (solvent B). Foldamers **1-4** were analyzed by using a flow rate of 0.4 ml.min⁻¹ and a gradient from 10% B to 100% B in 5 min. Foldamers **5-7** were analyzed by using a flow rate of 0.4 ml.min⁻¹ and a gradient from 20% B to 100% B in 5 min.

Foldamers **8** and **9** were analyzed by using a flow rate of 0.33 ml.min⁻¹ and a gradient from 20% B to 100% B in 8 min.

2. Experimental section

2.1. Manual microwave-assisted SPFS of foldamers 1-4

Bromination of low loading Wang resin: Low loading Wang resin (150 mg, 0.0615 mmol) was swollen in 2 mL anhydrous DMF for 1 h under N₂. PPh₃ (81 mg, 0.3075 mmol, 5.0 equiv.) and CBr₄ (103 mg, 0.3075 mmol, 5 equiv.) were then added in that order and the resin was stirred overnight under N₂ at room temperature. The resin was filtered off, and washed with anhydrous DMF (3 x 3 mL), DCM (3 x 3 mL) and isopropanol (3 x 3 mL, sequence repeated three times) and then dried under high vacuum.

Loading of first monomer unit: Low loading bromo-Wang resin (150 mg, 0.0615 mmol) was swollen in anhydrous DMF (2 mL) for 1 h under N₂. Fmoc-O(Boc)-OH (178 mg, 0.1845 mmol, 3.0 equiv.) and CsI (48 mg, 0.1845 mmol, 3.0 equiv.) were then added, followed by DIEA (64 μ L, 0.369 mmol, 6.0 equiv.). The reaction vessel was then placed under microwave irradiation (50 W, ramp to 50 °C over 5 min, then hold at 50 °C for 5 min). The resin was washed with anhydrous DMF (3 x 3 mL) and the process was repeated once. The resin was then washed thoroughly with DMF (6 x 3 mL).

General procedure for Fmoc deprotection: To Fmoc- O(Boc)-Wang resin was added a 20% solution of piperidine in DMF (4 mL) and the resin was stirred for 3 min at room temperature. The resin was washed with DMF (3 x 3 mL) and the deprotection step was repeated once for 7 min. After filtration, the resin was then washed thoroughly with DMF (3 x 3 mL) and anhydrous THF (3 x 3 mL) prior to coupling reaction.

General procedure for acid chloride activation exemplified by preparation of Fmoc-D(O*t*Bu)-CI: Fmoc-D(O*t*Bu)-OH (200 mg, 0.369 mmol) was dissolved in anhydrous DCM (3 mL) under N₂, and 1-chloro-*N*,*N*,2-trimethyl-1-propenylamine (100 μ L, 0.718 mmol) was added. The mixture was stirred for 1 h before solvent removal and drying under high vacuum.

General procedure of Fmoc-Q-Cl coupling on Wang resin-bound oligoquinoline, exemplified with Fmoc-D(OtBu)-Cl: To a H-(Q)_n-Wang resin (150 mg, 0.0615 mmol) swollen in anhydrous THF (1.5 mL), was added DIEA (64 μ L, 0.369 mmol, 6.0 equiv.). Next, freshly prepared Fmoc-D(OtBu)-Cl was dissolved in anhydrous THF (3 mL) and 1.5 mL of this solution (0.184 mmol, 3 equiv.) was added to the resin. The reaction vessel was then placed under microwave irradiation (50 W, ramp to 50° C over 5 min, then hold at 50 °C for

15 min). The resin was filtered off and washed with anhydrous THF (3 x 3 mL) and the coupling was repeated once. The resin was filtered off before and washed thoroughly with DMF (6 x 3 mL).

The same deprotection/coupling cycles were performed until 8-mer **O-D-O-L-D-O-D-O-Wang**. This sequence is common for the SPFS of all the oligomers. The resin was then divided into several batches to prepare foldamers **1-7**.

General procedure for resin cleavage and side chain deprotection: The resin-bound foldamer was washed with DMF (3 x 3 mL), DCM (3 x 3 mL) before to be dried under desiccator. The resin was then suspended in a solution of TFA/TIS/H₂O (95:2.5:2.5, v/v/v, 4-5 ml) and next was shaken for 2 h at room temperature. The resin was then filtered off and washed once with the TFA solution. The combined filtrate was evaporated under reduced pressure. The resulting oily solid was precipitated with cold Et₂O, triturated, washed with Et₂O, centrifuged and lyophilized to obtain the crude foldamer.

Compound 1: Foldamer **1** was purified by RP-HPLC semi-preparative chromatography using a linear gradient from 5% B to 40% B in 20 min (C₁₈ column; A: H₂O + 0.1% TFA and B: CH₃CN + 0.1% TFA; HPLC purity >99%). ¹H NMR (700 MHz, DMSO-d₆): **amide NHs** δ 10.90 (s, 1H), 10.84 (s, 1H), 10.74 (s, 2H), 10.27 (d, *J* = 17.8 Hz, 2H), 10.14 (d, *J* = 15.6 Hz, 2H), 10.05 (s, 1H), 9.82 – 9.77 (m, 5H); **aromatic CHs** δ 8.20 (s), 7.95 (t, *J* = 7.1 Hz), 7.82 (d, *J* = 6.8 Hz), 7.62 – 7.46 (m), 7.45 – 7.31 (m), 7.29 – 7.09 (m), 7.05 (t, *J* = 6.9 Hz), 7.02 – 6.89 (m), 6.85 (d, *J* = 6.5 Hz), 6.81 – 6.78 (m), 6.75 (d, *J* = 6.5 Hz), 6.71 (s), 6.67 (s), 6.56 (s), 6.44 (s), 6.34 (s), 6.28 (s), 6.23 (s), 6.18 (d, *J* = 5.8 Hz), 5.88 (s), 5.66 (s), 5.54 (d, *J* = 13.9 Hz), 5.41 (s); **aliphatic CHs** δ 4.47 – 3.73 (m), 3.05 – 2.96 (m), 2.32 – 1.96 (m), 1.91 (s), 1.65 – 1.47 (m), 1.31 – 1.19 (m), 1.15 (d, *J* = 6.6 Hz). **HRMS** (ESI⁺) m/z calcd. (most abundant mass peak) for C₁₉₄H₁₈₁N₃₈O₃₇: 726.8684 (M+5H)⁵⁺; found: 726.9652.

Compound 2: Foldamer **2** was purified by RP-HPLC semi-preparative chromatography using a linear gradient from 5% B to 40% B in 20 min (C_{18} column; A: $H_2O + 0.1\%$ TFA and B: $CH_3CN + 0.1\%$ TFA; HPLC purity >99%). ¹**H NMR** (700 MHz, DMSO-d₆): **amide NHs** δ 10.89 (s, 1H), 10.83 (d, *J* = 17.8 Hz, 2H), 10.74 (s, 1H), 10.31 (d, *J* = 12.4 Hz, 2H), 10.27 (s, 1H), 10.10 (s, 1H), 10.06 (s, 1H), 9.92 (d, *J* = 14.4 Hz, 2H), 9.88 (s, 1H), 9.85 (s, 1H); **aromatic CHs** δ 8.30 (s), 7.96 (d, *J* = 7.0 Hz), 7.82 (d, *J* = 6.9 Hz), 7.63 – 7.43 (m), 7.41 – 7.33 (m), 7.29 – 7.20 (m), 7.20 (d, *J* = 7.5 Hz), 7.18 – 7.13 (m), 7.12 (dd, *J* = 13.3, 6.0 Hz), 7.05 (dt, *J* = 17.9, 8.7 Hz), 7.03 – 6.94 (m), 6.94 – 6.85 (m), 6.81 (d, *J* = 6.5 Hz), 6.75 (t, *J* = 6.1 Hz), 6.70 (s), 6.57 (s), 6.45 (s), 6.36 (d, *J* = 9.5 Hz), 6.18 (d, *J* = 6.1 Hz), 5.89 (s), 5.65 – 5.57 (m), 5.56 (s); **aliphatic CHs** δ 4.24 – 3.80 (m), 3.26 – 3.13 (m), 3.09 – 2.90 (m), 2.36 – 2.11 (m), 2.09 – 2.0 (m), 1.30 – 1.20 (m). **HRMS** (ESI⁺) m/z calcd. (most abundant mass peaks) for $C_{181}H_{168}N_{35}O_{35}$: 678.4490 (M+5H)⁵⁺; for $C_{181}H_{167}N_{35}O_{35}$: 848.0602 (M+4H)⁴⁺; for $C_{181}H_{166}N_{35}O_{35}$: 1130.0768 (M+3H)³⁺; found: 678.7491; 848.4468; 1130.2835.

Compound 3: Foldamer **3** was purified by RP-HPLC semi-preparative chromatography using a linear gradient from 5% B to 40% B in 20 min (C₁₈ column; A: H₂O + 0.1% TFA and B: CH₃CN + 0.1% TFA; HPLC purity >99%). ¹**H NMR** (700 MHz, DMSO-d₆): **amide NHs** δ 10.93 (s, 1H), 10.84 (s, 1H), 10.75 (s, 2H), 10.33 (s, 1H), 10.13 (s, 4H), 9.95 (s, 1H), 9.93 (s, 1H), 9.87 (s, 1H), 9.82 (s, 1H); **aromatic CHs** δ 8.21 (s), 7.97 (s), 7.82 - 7.79 (m), 7.60 - 6.65 (m), 6.44 (s), 6.39 (s), 6.33 (s), 6.23 - 6.16 (m, 5H), 5.91 (s), 5.76 (s), 5.65 (d, *J* = 17.3 Hz), 5.45 (s); **aliphatic CHs** δ 4.35 - 3.94 (m), 3.11 - 2.90 (m), 2.37 - 1.94 (m), 1.31 - 1.19 (m). **HRMS** (ESI⁺) m/z calcd. (most abundant mass peaks) for C₁₈₁H₁₆₈N₃₅O₃₅: 678.4490 (M+5H)⁵⁺; for C₁₈₁H₁₆₇N₃₅O₃₅: 847.8090 (M+4H)⁴⁺; for C₁₈₁H₁₆₆N₃₅O₃₅: 1130.0768 (M+3H)³⁺; found: 678.5468; 847.9452; 1130.2755.

Compound 4: Foldamer **4** was purified by RP-HPLC semi-preparative chromatography using a linear gradient from 5% B to 40% B in 20 min (C_{18} column; A: H_2O + 0.1% TFA and B: CH_3CN + 0.1% TFA; HPLC purity

>99%). ¹H NMR (700 MHz, DMSO-d₆): amide NHs δ 10.97 (s, 1H), 10.81 (d, *J* = 13.3 Hz, 2H), 10.72 (s, 1H), 10.32 (s, 1H), 10.27 (s, 1H), 10.22 (d, *J* = 12.5 Hz, 2H), 10.12 (s, 1H), 9.95 (s, 2H), 9.91 (s, 1H), 9.87 (s, 1H); aromatic CHs δ 8.21 (s), 7.97 (d, *J* = 6.9 Hz), 7.82 (d, *J* = 6.9 Hz), 7.65 – 7.45 (m), 7.44 – 7.33 (m), 7.29 (t, *J* = 7.4 Hz), 7.26 – 7.19 (m), 7.14 – 7.05 (m), 7.02 – 6.88 (m), 6.80 (d, *J* = 6.4 Hz), 6.76 (s), 6.69 (d, *J* = 8.2 Hz), 6.43 (s), 6.35 (d, *J* = 14.9 Hz), 6.20 (d, *J* = 6.8 Hz), 6.15 (s), 5.92 (s), 5.78 (s), 5.67 (s), 5.59 (s), 5.49 (s); aliphatic CHs δ 4.35 – 3.77 (m), 3.26 – 3.16 (m), 3.09 – 2.90 (m), 2.38 – 2.21 (m), 2.19 – 2.10 (m), 2.07 – 1.97 (m), 1.28 (t, *J* = 6.8 Hz, 14H), 1.25 – 1.21 (m). HRMS (ESI⁺) m/z calcd. (most abundant mass peaks) for C₁₈₀H₁₆₇N₃₆O₃₅: 678.6480 (M+5H)⁵⁺; for C₁₈₀H₁₆₆N₃₆O₃₅: 848.0582 (M+4H)⁴⁺; for C₁₈₀H₁₆₅N₃₆O₃₅: 1130.4085 (M+3H)³⁺; found: 678.7487; 847.9458; 1130.6132.

2.2. Manual microwave-assisted SPFS of foldamers 5-7

The SPFS of oligomers **5-7** was performed as described before.^[10a] The only difference was the introduction of a capping step after each quinoline monomer coupling. Resin-bound foldamer (35 mg, 0.0143 mmol) was suspended in anhydrous THF (1 mL), to which was added DIEA (30 μ L, 0.1722 mmol, 12.0 equiv.) followed by Ac-Cl (6 μ L, 0.0861 mmol, 6.0 equiv.). The resin was shaken at r.t. for 5 min, washed with anhydrous THF (3 x 3 mL), and the capping step was repeated twice. The resin was then washed thoroughly with THF (6 x 3 mL) and DMF (6 x 3 mL).

Compound 5: Foldamer **5** was purified by RP-HPLC semi-preparative chromatography using a linear gradient from 20% B to 40% B in 35 min (C₁₈ column; A: H₂O + 0.1% TFA and B: CH₃CN + 0.1% TFA; HPLC purity >99%). ¹**H NMR** (700 MHz, DMSO-d₆): **amide NHs** δ 10.64 (s, 1H), 10.61 (s, 1H), 10.53 (s, 2H), 10.08 (s, 1H), 10.04 (s, 1H), 9.95 (s, 1H), 9.88 (s, 1H), 9.78 (s, 1H), 9.70 (s, 1H), 9.51 – 9.46 (m, 4H), 9.42 (s, 1H), 9.37 (s, 1H), 9.34 – 9.07 (m, 15H); **aromatic CHs** δ 8.01 (s), 7.78 (d, *J* = 6.3 Hz), 7.65 (d, *J* = 6.4 Hz), 7.44 – 7.26 (m), 7.23 – 7.19 (m), 7.17 – 7.12 (m), 7.13 – 7.04 (m), 7.06 – 6.98 (m), 6.98 – 6.88 (m), 6.83 (t, *J* = 6.9 Hz), 6.79 (t, *J* = 6.3 Hz), 6.77 – 6.70 (m), 6.67 (m, *J* = 4.8 Hz), 6.61 – 6.45 (m), 6.42 – 6.29 (m), 6.23 (s), 6.07 (s), 5.96 (d, *J* = 6.9 Hz), 5.83 (d, *J* = 12.6 H), 5.79 (s), 5.74 (s), 5.71 (s), 5.67 (s), 5.49 (s), 5.47 (s), 5.40 (s), 5.33 (s), 5.30 (s), 5.26 (s), 5.24 – 5.20 (m), 5.17 (s), 5.16 – 5.11 (m), 5.09 (d, *J* = 7.1 Hz); **aliphatic CHs** δ 4.13 – 3.31 (m), 2.18 – 1.88 (m, 1H), 1.60 – 1.55 (m), 1.50 – 1.46 (m), 1.34 (d, *J* = 4.5 Hz), 1.19 – 1.14 (m), 1.09 (q), 1.00 – 0.89 (m, 31H). **HRMS** (ESI⁺) m/z calcd. (most abundant mass peaks) for C₄₁₃H₃₇₉N₇₉O₇₇: 959.9783 (M+8H)⁸⁺; for C₄₁₃H₃₇₈N₇₉O₇₇: 1096.9741 (M+7H)⁷⁺; found: 959.9868; 1096.9943.

Compound 6: Foldamer **6** was purified by RP-HPLC semi-preparative chromatography using a linear gradient from 20% B to 40% B in 35 min (C₁₈ column; A: H₂O + 0.1% TFA and B: CH₃CN + 0.1% TFA; HPLC purity >99%). ¹H **NMR** (700 MHz, DMSO-d₆): **amide NHs** δ 10.73 (s, 1H), 10.64 (d, *J* = 15.1 Hz, 3H), 10.16 (s, 1H), 10.12 (s, 1H), 10.07 (s, 1H), 10.00 (s, 1H), 9.87 (s, 1H), 9.72 (s, 1H), 9.65 (s, 1H), 9.57 (s, 3H), 9.47 – 9.42 (m, 3H), 9.38 (d, *J* = 16.3 Hz, 2H), 9.33 – 9.18 (m, 18H), 9.13 (s, 1H), 9.10 (s, 1H); **aromatic CHs** δ 8.09 (s), 7.87 (d, *J* = 6.1 Hz), 7.74 (d, *J* = 6.4 Hz), 7.58 (d, *J* = 5.8 Hz), 7.52 – 7.38 (m), 7.36 – 7.28 (m), 7.27 – 7.16 (m), 7.16 – 7.06 (m), 7.06 – 6.97 (m), 6.96 – 6.87 (m), 6.86 – 6.31 (m), 6.16 (s), 6.11 (s), 6.05 (s), 5.98 (s), 5.91 (d, *J* = 7.0 Hz), 5.86 (d, *J* = 11.7 Hz), 5.79 (d, *J* = 9.4 Hz), 5.75 (d, *J* = 3.8 Hz), 5.68 (s), 5.57 (s), 5.49 (d, *J* = 6.8 Hz), 5.39 (d, *J* = 7.5 Hz), 5.32 (s), 5.28 (s), 5.25 (d, *J* = 10.6 Hz), 5.23 – 5.15 (m), 5.11 (s); **aliphatic CHs** δ 4.10 – 3.43 (m), 2.28 – 1.97 (m), 1.68 (m), 1.61 – 1.56 (m), 1.53 – 1.47 (m), 1.29 – 1.24 (m), 1.20 – 1.15 (m), 1.13 – 1.08 (m), 1.07 – 0.93 (m). **HRMS** (ESI⁺) m/z calcd. (most abundant mass peaks) for C₅₁₆H₄₇₁N₉₈O₉₆: 1064.3901 (M+9H)⁹⁺; for C₅₁₆H₄₇₀N₉₈O₉₆: 1197.3129 (M+8H)⁸⁺; found: 1064.3789; 1197.3117.

Compound 7: Foldamer **7** was purified by RP-HPLC semi-preparative chromatography using a linear gradient from 20% B to 40% B in 35 min (C₁₈ column; A: H₂O + 0.1% TFA and B: CH₃CN + 0.1% TFA; HPLC purity >99%). ¹H **NMR** (700 MHz, DMSO-d₆): **amide NHs** δ 10.72 (s, 1H), 10.67 (s, 1H), 10.63 (d, *J* = 9.1 Hz, 2H), 10.15 (s, 1H), 10.11 (s, 1H), 9.96 (d, *J* = 11.6 Hz, 2H), 9.86 (s, 1H), 9.74 (s, 1H), 9.58 – 9.52 (m, 4H), 9.49 (s, 1H), 9.45 (s, 1H), 9.41 (s, 1H), 9.36 (d, *J* = 13.2 Hz, 3H), 9.31 – 9.16 (m, 18H), 9.12 (s, 1H), 9.09 (s, 1H); **aromatic CHs** δ 8.07 (s), 7.86 (d, *J* = 6.3 Hz), 7.73 (d, *J* = 6.3 Hz), 7.61 (d, *J* = 5.8 Hz), 7.55 – 7.35 (m), 7.34 – 7.26 (m), 7.23 (t, *J* = 8.2 Hz), 7.19 – 6.95 (m), 6.93 – 6.72 (m), 6.70 – 6.56 (m), 6.54 – 6.30 (m), 6.21 (s), 6.15 (s), 6.04 (s), 6.01 (s), 5.95 (s), 5.89 (d, *J* = 6.9 Hz), 5.85 (d, *J* = 14.3 Hz), 5.80 – 5.75 (m), 5.73 (s), 5.60 (s), 5.56 (s), 5.48 (s), 5.38 (s), 5.31 (s), 5.27 (s), 5.25 (s), 5.23 (s), 5.21 – 5.14 (m), 5.10 (s); **aliphatic CHs** δ 4.17 (s), 4.12 (s), 4.0 – 3.75 (m, 1H), 3.73 – 3.42 (m), 2.25 – 1.95 (m), 1.69 – 1.65 (m), 1.59 – 1.55 (m), 1.29 – 1.24 (m), 1.23 – 1.14 (m), 1.13 – 1.08 (m), 1.10 – 1.06 (m), 1.06 – 0.96 (m), 0.98 – 0.93 (m). **HRMS** (ESI⁺) m/z calcd. (most abundant mass peaks) for C₅₂₉H₄₈₄N₁₀₁O₉₈: 1091.4013 (M+9H)⁹⁺; for C₅₂₉H₄₈₃N₁₀₁O₉₈: 1227.7005 (M+8H)⁸⁺; found: 1091.3884; 1227.6965.

2.3. Automation of the SPFS of foldamers 8-9

Construction of the library of Fmoc-Q-OH

In order to automate the SPFS of aromatic oligoamides on Chorus PurePep synthesizer, the first step was to build a library of aromatic monomers and to assign them a specific and unique location of amino acid bottle line. To do so an excel file was generated and each aromatic building block was named in a similar manner to the one or three letters code used for α -amino acid residues (Figure S1).

Figure S1. Illustration of the sequence building and the library of aromatic monomers with their one and three letter code, respectively.

2.4. Setting up the Chorus PurePep ® synthesizer for SPFS

Solvent lines and solvent distribution

Each bottle is always filled-up with the same solvent or reagent solution so that there will never be any contamination.

The two first solvent lines are meant for top and timed delivery. Peptide grade DMF was assigned in position 1 because it is the most used solvent for resin and system washings.

Anhydrous THF is in solvent line 2, 2% DBU in NMP in solvent 3 and when capping is required the line 4 is filled up with AC₂O in DCM (50/50, v/v).

For metered delivery, we use the solvent lines 5-7. Solvent line 5 for PPh₃ in anhydrous THF, line 6 TCAN in anhydrous THF and line 7 for 2,4,6-collidine in anhydrous THF.

If solvent line 1 and 2 deliver the solvent from the top of the RV, all the remaining lines perform solution dispensing from the bottom of the RV. The set-up of solvent is recapitulated in following table S1.

Table S1. Description of solvent set-up for SPFS

Solvent line	Solvent
1	DMF
2	Anhydrous THF
3	2% DBU in NMP
4	Ac ₂ O in DCM (50:50, v/v)
5	PPh ₃ in anhydrous THF
6	TCAN in anhydrous THF
7	Collidine in anhydrous THF
8	DCM

The implementation of the coupling protocol for quinoline-type monomers on solid support follows the same series of steps for protocols earlier developed by Protein Technologies for SPPS. In other words, a coupling cycle in SPFS is composed of three main tasks: Deprotection, washings and coupling. A cycle begins always with the Fmoc-deprotection and ends with resin washings.

In the context of aromatic oligoamides, the deprotection is performed twice for 10 min with 2% DBU in NMP (step 1 in table S2). At the contrary to what has been reported for Fmoc deprotection in peptide chemistry, we have never observed any difficulty in removing the Fmoc protecting group on quinoline monomers. This deprotection step has not yet been optimized. However, because we favour high purity of the crude material with respect of synthesis time, we have not yet spent efforts in optimizing this specific step. If performed, it will be reported in due course.

Once the deprotection steps are completed, the resin is filtered off and washed (see steps 2 and 3 in table S2). The extensive washings with THF are meant for preparing the resin to the coupling in anhydrous THF. For the same reason although empty, the PV is rinsed twice with anhydrous THF (see line 4, PV box crossed) for pre-conditioning before the in situ activation process in this vessel.

Next, start the coupling phase. At first, like performed manually, the solution of collidine in anhydrous THF is added to the RV. The solution of aromatic monomer is then delivered to the PV and subsequently, PPh₃ solution in THF and at last TCAN solution in THF (steps 6-8 in table S2). The PV is then shaken for one minute and N₂ bubbling is performed for Fmoc-Q-Cl solution homogenisation. Because, we performed the acid chloride activation in pure THF, an eye-visible precipitate forms spontaneously upon TCAN addition. This precipitate has been characterized and does correspond to the phosphonium salt: Cl⁻,⁺PPh₃-CH₂CN. It is washed away at the end of the cycle by rinsing the PV with DMF (see step 25 in table S2).

After one minute of activation, the freshly made acid chloride solution is transferred to the RV by using the "*PV to RV operation*" (row 9 in table S2).

The coupling then takes place in the RV by heating it at 50 °C for 15 min. The monitoring of the temperature shows a fast ramping time and a stable target temperature over the course of the coupling step. At the end of the coupling cycle, the resin is filtered off and the steps 3 to 11 are repeated once.

Final washings of the RV and PV with DMF allow the resin to be placed in the conditions of the next cycle.

If a capping step is required, it is performed after the coupling steps (see steps 22 and 23 in table S2).

PV to RV: freshly formed acid chloride solution dispensed in Reaction Vessel (RV)

Figure S2. Cartoon illustrating the formation of the Fmoc-Q-Cl in the pre-activation vessel (PV) followed by the step called PV to RV.

Step	operation	Solvent	Vol(mL)	Mix Time(HH:MM:SS)	Drain	PV	Reps	N ₂	Shake/ RPM	Heat (depro*)
1	Bottom Delivery	DBU/NMP	3.00	00:10:00	✓		2	✓	250	
2	Top Delivery	DMF	3.00	00:00:15	✓		1	✓		
3	Top Delivery	THF	3.00	00:00:20	✓		3	✓		
4	Top Delivery	THF	2.00	00:00:10	✓		2	✓		
5	Bottom Delivery	Coll	0.50	00:00:01			1			
6	AA Building Block	None	1.00	00:00:01		✓	1	✓		
7	Bottom Delivery	PPh ₃	1.00	00:00:01		✓	1	✓		
8	Bottom Delivery	TCAN	0.50	00:01:00		✓	1	✓	150	
9	PV to RV	None					1			
10	Mix	None		00:15:00	✓		1		250	✓ 50°C
11	Drain	None					1			
		•	Re	peat steps 3 to 11 one tin	ne					
21	Top Delivery	DMF	3.00	00:00:15	 ✓ 		3	✓		
22	Bottom Delivery	DCM	3.00	00:00:10	✓		3	 ✓ 		
23	Bottom Delivery	Ac ₂ O	3.00	00:00:10	✓		1	√		✓ 40°C
24	Top Delivery	DMF	3.00	00:00:15	 ✓ 		3	✓		
25	Top Delivery	DMF	2.00	00:00:10	✓		2	✓		

Table S2. General protocol developed for SPFS automation on Chorus PurePep ® synthesizer

*When a capping step is included in the protocol to heat it at a different temperature to the coupling one, the deprotection box is selected, thus offering the possibility to apply two different temperatures per coupling cycle. The steps 22 & 23 were introduced after the 8th coupling; i.e. the eight first coupling cycles were done with no capping.

	Synthesis	≣	RV1 RV2	
Centre (a) 2 2 3 1 <th1< th=""> <th1<< th=""><th>Grouping</th><th></th><th>RV Sizer Pratocok/Temas C terminus C terminus</th><th></th></th1<<></th1<>	Grouping		RV Sizer Pratocok/Temas C terminus C terminus	
Singuran 	Chemistry			
State Cpt Petersi: Sart; H_BBA0;petersC Calcade 1 State; SH_BBA0;petersC State; SH_BBA0;petersC 1 State; SH_BBA0;petersC Calcade 1 State; SH_BBA0;petersC State; SH_BBA0;petersC State; SH_BBA0;petersC 1 State; SH_BBA0;petersC State; SH_BBA0;petersC State; SH_BBA0;petersC 1 State; SH_BBA0;petersC State; SH_BBA0;petersC State; SH_BBA0;petersC 1 State; SH_BBA0;petersC State; SH_BBA0;petersC State; SH_BBA0;petersC State; SH_BBA0;petersC 1 State; SH_BBA0;petersC State; SH_BBA0;p	Sequence	ĺ	* - Qio - * - Qor - * - Qas - * - Qor - * - Qas - * - Qib - * - Qib - * - Qor - Qas - Qor - Qib - Qas - Qor - Qas - Qor 1 * - Qio - * - Qor - * - Qas - * - Qor - * - Qas - * - Qib - * - Qor - Qor - Qos - Qor - Qib - Qas - Qor - Qas - Qor - Qas - Qor 2	
record ref record	Setup			
Calculation Image: Stand 3rd datage read CC Page: Controls on Stand View (1981) Stand 3rd datage read CC Run Stand 3rd datage read CC Stand 3rd datage read CC Page: Controls on Stand View (1981) Stand 3rd datage read CC Run Stand 3rd datage read CC Stand 3rd datage read CC Trip Delay (1981) Stand 3rd datage read CC Run Stand 3rd datage read CC Run Stand 3rd datage read CC Stand 3rd datage read CC Run History Page 7 Stand 3rd datage read CC Run History Stand 3rd datage read CC Run History Page 7 Stand 3rd datage read CC Stand 3rd datage read CC Run	Protocol	j.	Cycle Protocol : Stanc_3ml_dbkoup_new_CC	
Calculation 2 grant_might grant_grant_charge grant_charge grant_grant_charge grant_grant_charge grant_grant_charge grant_grant_charge grant_grant_charge grant_grant_charge grant_grant_charge grant_grant_grant_charge grant_grant_grant_charge grant_grant_grant_charge grant_grant_grant_grant_charge grant_gr			Step Operation Solvent Volume(µL) Time	
Run 1 9 wind Line discognance(C 8 un 1 5 90 wind Line discognance(C 5 9 wind Line discognance(C 2 2000 000000000000000000000000000000000	Calculation		2 Stand_3ml_dbicoup_new_CC 1 Bottom Delivery DBU_NMP [3tb] 3000 001000	
Run 4 9xmd_MuddinowpawedC 4 10p Datasy 10p		ř.	3 Stand_3mi_dbicoup_new_CC 2 rup Delivery Div r (bin) 3000 000020 3 Stand_3mi_dbicoup_new_CC 3 Top Delivery THF [5t2] 3000 000020	
Run History 3 Band Jim Jabroog prev. CC 5 Autom Delsery Call Bit1 0.0 0.000001 Run History 2 Sama Jim Jabroog prev. CC 7 Runtom Delsery Call Bit11 0.00 0.000001 7 Runtom Delsery CAll Bit11 0.00 0.000001 0.000001 7 Runtom Delsery CAll Bit11 0.00 0.000001 8 Data Status Copy To Report Dore 0.000001 Compliand RV1 RV2 Save Comminus Comminus Comminus Comminus Comminus	Run 🗸	k	4 Stand_3mi_doicoup_new_CC 4 Tep Delivery THF [312] 2000 00.00.10	
Run History is Sund Aref above row (ic 6 A Building Book None 100 0000001 7 Sund Stef above row (ic 6 A Building Book None 100 0000001 7 Sund Stef above row (ic 6 A Building Book None 100 0000001 7 Sund Stef above row (ic 6 A Building Book None 100 0000001 7 Sund Stef above row (ic 6 A Building Book None 100 0000001 9 Status Cleave Copy To Report Done 02/03/2023 IS-59 PUPEPepChorus Synthesis E RVJ RV2 Save Save Save Creminus Chemistry Coopy To Report Done Creminus Creminus Sequence Coopy To Report Done Creminus Creminus 1 Other Other Other Other Post Other Other Other Other None None None None None None None None None Non	î	ř	5 Stand_3mi_doicoup_ncv_CC 5 Battam Delivery Call [Bit7] 500 00/03/01	
7 Sand 3 mid discoggi new CC 7 Refurnit Dekiny PAIL Billity 300 300 000 Cleave Copy To Report Done 200 000000 Synthesis Exyl RV2 Save Save Save Chemistry Save Report Done Commistry Sequence 21 20 19 16 15 14 12 10 9 8 7 6 5 4 3 2 1 KV Sequence Explore Explore Explore Commistry Save Commistry	Run History	Į.	6 AA Building Block None 1000 0000:01	
Cleave Copy To Report Done Cleave Copy To Report Done Synthesis RV1 RV2 Save Protocol (finger Cleave C terminus Chemistry Save C terminus Chemistry C terminus C terminus Cleave C terminus C terminus C terminus C terminus C terminus C terminus C terminus C terminus C terminus C terminus C terminus So to to C			7 Sland 3ml doicoup new CC 7 Bottom Delivery PPh3 (PUS) 1000 00.001	
Cleave Copy To Report Done • Occasional is so PurePerChorus • Occasional is so PurePerChorus • Synthesis • Nome • PurePerChorus • Open • PurePerChorus • Save • Open • PurePerChorus • Save • Open • PurePerChorus • Save • Open • PurePerChorus • Chemistry • Open • PurePerChorus • Chemistry • Open • PurePerChorus • Chemistry • Open • Open • Open • Open • Open • O				
Status Save Synthesis RV 1 RV2 Save Comminsion Comminsion Chemistry Comminsion Sequence Comminsion Comminsion Comminsion Claused of the capping step To a so a contain a cont	-		Cleave Copy To Report Done	
Synthesis E RV1 RV2 Save Grouping Revised/former C terminus Chemistry Calculation RV C terminus Chemistry Commission Commission C terminus C terminus C terminus C terminus Sequence Commission Commission C terminus C terminus C terminus Security Commission C terminus C terminus C terminus C terminus Security Commission Commission Commission C terminus C terminus C terminus Run Commission Run	. Status		02/03/2023 15:59 PurePepChorus	
No see Perclocal/(rems) C terminus Circoping Perclocal/(rems) C terminus Ceeve C terminus C terminus	Synthesis	Ξ	RV1 RV2 Save	
Chemistry A Z	Grouping		RV Size: Protocols/Temps 10 mL C terminus	
Sequence 	Chemistry			
Setup Protocol Run Run History Cleave Cleave Cleave Copy To Run Run Run Run Run Run Run Run	Sequence		* - Qib - * - Qor - * - Qas - * - Qor - * - Qas - * - Qib - * - Qor - Qor - Qor - Qib - Qas - Qor - Qib - Qas - Qor - Qib - Qis - Qin - Qis - Qin - Qis - Qin - Qi	
Setup IC= coupling temperature Protocol IC= coupling temperature Td= deprotection temperature, here used for the capping step Calculation IC= coupling temperature, <			$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
Protocol RV1 VV VV VV here used for the capping step Calculation Run History C C eve Copy To Report Done	Setup		Td= deprotection temperature	
Calculation Image: Conternance of the content of t	Protocol		RVI UV RV2 VV here used for the capping step	
Run 1 Qas 50 40 Qas 0 0 2 Qas 50 40 Qas 0 0 3 Qas 50 40 Qas 0 0 4 Chb 50 40 Qas 0 0 3 Qas 50 40 Qas 0 0 4 Chb 50 40 Qas 0 0 5 Qar 50 40 Qar 0 0 Cleave Copy To Report Done	Calculation		C-Term 50 40 0 0 0 RV.= PV, no heating in the vessel	
Run 2 Qor 50 40 Qor 0 0 Run History 1 Qor 50 40 Qor 0 0 2 Qor 50 40 Qor 0 0 2 Qor 50 40 Qor 0 0 3 Qor 50 40 Qor 0 0 4 Qor 50 40 Qor 0 0 5 Qor 50 40 Qor 0 0 Cleave Copy To Report Done			1 Qas 50 40 Qas C C	
Run History 3 Qas 50 40 Qas 0 0 4 Cib 50 40 Qab 0 0 3 Qee 50 40 Qab 0 0 3 Qee 50 40 Qee 0 0	Run 🗸		2 Qor 50 40 Qor 0 0	
4 C(b) 50 40 Qb 0 0 5 Qcer 50 40 Qcer 0 0 Cleave Copy To Report Done	Run History		3 Qas 50 40 Qas 0 0	
5 Qer 50 40 Qer 0 0 Cleave Copy To Report Done			4 Qib 50 40 Qib 6 C	
Cleave Copy To Report Done			5 Qor 50 40 Qor 0 0	
			Cleave Copy To Report Done	
	() Ctatu			

<u>Figure S3.</u> Views of the protocol sub-window where the protocol for a given cycle is selected and the target temperatures for coupling and capping are saved.

2.5. Synthesis of Ylide 10 in solution

Fmoc-L-CI: In a 25 mL flask, Fmoc-L-OH (24.2 mg, 0.05 mmol, 1.0 equiv) was suspended in 2 mL of dry DCM. Oxalyl chloride (5 μ L, 0.06 mmol, 1.2 equiv.) was then added. The reaction mixture instantly became homogenous and turned yellow. After 1 h, solvent and excess of oxalyl chloride were removed under high vacuum.

Ylide 10: In a NMR tube (5 mm diameter), freshly formed Fmoc-L-Cl was dissolved in 0.5 mL of CDCl₃, previously passed through activated alumina. Commercially available (Cyanomethylene)-triphenylphosphorane **11** (15.1 mg, 0.05 mmol, 1 equiv.) was then added to the reaction mixture. After 15 min, a ³¹P NMR spectrum of the mixture was recorded at 298 K and showed the formation of ylide **10** (see Figure S20d).

2.6. Regeneration of Fmoc-L-OH from 10

In a 10 mL flask, **10** (38.5 mg, 0.05 mmol, 1.0 equiv.) was dissolved in a mixture of 2 mL 1:1 DMF/H₂O. N-chlorosuccinimide (NCS) (67.5 mg, 0.25 mmol, 5 equiv.) was then added. The reaction was then monitored by RP-HPLC until complete disappearance of the starting material (see Figure S22).

3. Characterization of foldamers

3.1. HPLC chromatograms of crude foldamers

Figure S4. RP-HPLC chromatograms of crude foldamers **1** (a), **2** (b), **3** (c), and **4** (d) using a linear gradient from 5% B to 40% B in 10 min; A: $H_2O + 0.1\%$ TFA and B: $CH_3CN + 0.1\%$ TFA; UV detection at $\lambda = 300$ nm.

<u>Figure S5.</u> RP-HPLC chromatograms of crude foldamers **5** (a), **6** (b), and **7** (c) using a linear gradient from 20% B to 40% B in 35 min; A: H₂O + 0.1% TFA and B: CH₃CN + 0.1% TFA; UV detection at λ = 300 nm.

<u>Figure S6.</u> RP-HPLC chromatograms of crude foldamers **8** (a), and **9** (d) using a linear gradient from 20% B to 40% B in 23 min; A: H₂O + 0.1% TFA and B: CH₃CN + 0.1% TFA; UV detection at λ = 300 nm.

3.2. HPLC chromatograms of pure foldamers

<u>Figure S7.</u> RP-HPLC chromatograms of pure foldamers **1** (a), **2** (b), **3** (c), and **4** (d) using a linear gradient from 5% B to 40% B in 10 min; A: H₂O + 0.1% TFA and B: CH₃CN + 0.1% TFA; UV detection at λ = 300 nm.

Figure S8. RP-HPLC chromatograms of pure foldamers **5** (a), **6** (b), and **7** (c) using a linear gradient from 20% B to 40% B in 35 min; A: H₂O + 0.1% TFA and B: CH₃CN + 0.1% TFA; UV detection at λ = 300 nm.

Figure S9. RP-HPLC chromatograms of the co-inJection of foldamers **1**, **2**, **3**, and **4** (a) using a linear gradient from 5% B to 20% B in 23 min; A: $H_2O + 0.1\%$ TFA and B: $CH_3CN + 0.1\%$ TFA, and foldamers **6** and **7** (b) using a linear gradient from 20% B to 40% B in 35 min; A: $H_2O + 0.1\%$ TFA and B: $CH_3CN + 0.1\%$ TFA; UV detection at λ = 300 nm.

3.3. ¹H NMR spectra of pure foldamers

Figure S10. ¹H NMR spectra (700 MHz) at 333 K of foldamers 1 (a), and 2 (b), (1 mM) in DMSO-d₆.

a) Ac-OODODLO-DOLDODO-OH 3

Figure S11. ¹H NMR spectra (700 MHz) at 333 K of foldamers 3 (a), and 4 (b), (1 mM) in DMSO-d₆.

Figure S12. ¹H NMR spectra (700 MHz) at 333 K of oligomers 5 (a), and 6 (b), (1 mM) in DMSO-d₆.

Figure S13. ¹H NMR spectrum (700 MHz) at 333 K of oligomer 7, (1 mM) in DMSO-d₆.

3.4. Mass spectrometry analysis of pure foldamers

Figure S14. Multicharged species observed by LC-ESI-MS of foldamers 1 (a), and 2 (b).

Figure S15. Multicharged species observed by LC-ESI-MS of foldamers 3 (a), and 4 (b).

Figure S16. Multicharged species observed by LC-ESI-MS of foldamers 5 (a), and 6 (b).

Figure S17. Multicharged species observed by LC-ESI-MS of foldamer **7** (a), and a mixture of **6** (10%) and **7** (b). Red and grey multicharged species correspond to foldamers **6** and **7**, respectively.

3.5. Mass spectrometry analysis of crude foldamers 8-9

Figure S18. Multicharged species observed by LC-ESI-MS of crude foldamers 8 (a), and 9 (b).

4. Synthesis and Characterization of ylide 10

Figure S19. (a) RP-HPLC chromatogram (linear gradient from 80% B to 100% B in 10 min; A: $H_2O + 0.1\%$ TFA and B: CH₃CN + 0.1% TFA; UV detection at λ = 300 nm), (b) multicharged species observed by LC-ESI-MS, and (c) ¹H NMR spectrum (500 MHz at 298 K in DMSO-d₆) of ylide **10**. ¹H NMR: δ 9.62 (s, 1H), 8.45 (s, 1H), 7.85 (dd, *J* = 15.7, 7.8 Hz, 5H), 7.80 – 7.71 (m, 9H), 7.71 – 7.59 (m, 7H), 7.47 (s, 1H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.16 (td, *J* = 7.5, 1.1 Hz, 2H), 4.34 (d, *J* = 7.8 Hz, 2H), 4.21 (t, *J* = 7.6 Hz, 1H), 4.07 (d, *J* = 6.5 Hz, 2H), 2.18 (dt, *J* = 13.3, 6.7 Hz, 1H), 1.06 (d, *J* = 6.7 Hz, 6H).

<u>Figure S20.</u>³¹P NMR spectra (162 MHz at 298K in CDCl₃) showing the formation of ylide **10** using commercial (cyanomethylene)-triphenylphosphorane **11**.

To confirm that **11** formed during the coupling step, thus leading to the formation of ylide **10** (a), the latter was synthesized on purpose. The acyl chloride of the monomer Fmoc-L-OH (Fmoc-L-Cl) was first synthesized in the presence of oxalyl chloride. After isolation, it was mixed with commercial phosphorane **11** (2 equiv.) (c). The ³¹P NMR of the mixture was next recorded in CDCl₃ (d) (see section 2.5). Since no base was introduced during this reaction, the phosphonium salt **12** quickly formed and its identity (d) was further confirmed by overlaying the ³¹P NMR spectrum of the mixture (d) with the one of the commercial compound (b). The formation of ylide **10** was then proven by ³¹P NMR. Due to the acidic environment in the mixture, a visible difference in the chemical shift value was observed (spectra in a, and d). A fast addition of 0.02 N HCl solution in the NMR tube of the isolated ylide **10** showed the good alignment of the signals at 23 ppm (spectra in a, and e).

<u>Figure S21.</u> ³¹P NMR spectra (162 MHz at 298K in CDCl₃) of the phosphonium salt **12** isolated as a precipitate during in situ acid chloride activation with TCAN/PPh₃ (bottom) and of a mixture of that salt and a genune commercial sample of **12** (top).

Figure S22. RP-HPLC monitoring of the degradation of ylide **10** into **Fmoc-L-OH** in the presence of NCS (linear gradient from 30% B to 100% B in 10 min; A: $H_2O + 0.1\%$ TFA and B: $CH_3CN + 0.1\%$ TFA; UV detection at $\lambda = 300$ nm).

Figure S23. LC-ESI-MS analysis of the recovered precipitate from the RV after acid chloride formation.

5. Crystal structure of isolated ylide 10

The X-ray intensity data of compound **10** were measured on a Bruker D8 Venture TXS system equipped with a multilayer mirror monochromator and a Mo K α rotating anode X-ray tube ($\lambda = 0.71073$ Å). The frames were integrated with the Bruker SAINT software package.^[32] Data were corrected for absorption effects using the Multi-Scan method (SADABS).^[33] The structure was solved and refined using the Bruker SHELXTL Software Package.^[34] All C-bound hydrogen atoms have been calculated in ideal geometry riding on their parent atoms, the N-bound hydrogen atom has been refined freely. The PLATON SQUEEZE^[35] program has been applied in order to squeeze-out solvent contents which could not be modelled properly. The voids contain 60 electrons, which would fit to CH₂Cl₂ (42 electrons) and CH₃OH (18 electrons).

Table S3. Crystallographic data of 10

	10
net formula	$C_{49}H_{40}N_3O_4P$
<i>M</i> ₁/g mol ^{−1}	765.81
crystal size/mm	0.080 × 0.060 × 0.040
T/K	102.(2)
radiation	ΜοΚα
diffractometer	'Bruker D8 Venture TXS'
crystal system	monoclinic
space group	'P 1 21/c 1'
a/Å	14.3498(6)
b/Å	9.0342(3)
c/Å	34.3552(14)
α/°	90
β/°	98.325(2)
γ/°	90
V∕/ų	4406.8(3)
Z	4
calc. density/g cm ⁻³	1.154
µ/mm⁻¹	0.108
absorption correction	Multi-Scan
transmission factor range	0.94–1.00
refls. measured	75978
R _{int}	0.0733
mean σ(<i>I</i>)/ <i>I</i>	0.0369
θ range	2.553–25.345
observed refls.	6985
x, y (weighting scheme)	0.0457, 15.3618
hydrogen refinement	mixed
refls in refinement	8048
parameters	520
restraints	0
$R(F_{obs})$	0.0915
$R_{\rm w}(F^2)$	0.2192
S	1.263
shift/error _{max}	0.001
max electron density/e Å-3	0.744
min electron density/e Å ⁻³	-0.363
CCDC#	2243294

6. Characterization of the N,N-dimethyl-N-(quinolin-8-yl)isobutyramidine

Figure 24. Characterization of the *N*,*N*-dimethyl-*N*-(quinolin-8-yl)isobutyramidine isolated from the side reaction of 8-aminoquinoline bearing sulfonic acid side chain with Ghosez's reagent. (a) RP-HPLC chromatogram (linear gradient from 0% B to 50% B in 10 min; A: $H_2O + 0.1\%$ TFA and B: $CH_3CN + 0.1\%$ TFA; UV detection at $\lambda = 254$ nm), (b) multicharged species observed by LC-ESI-MS, and (c) ¹H NMR spectrum (500 MHz at 298 K in H_2O/D_2O 9:1 with water suppression). ¹H NMR: δ 9.97 (s_{br}, 1H), 8.91 (t, *J* = 5.7 Hz, 1H), 8.72 (d_{br}, *J* = 9.2 Hz, 1H), 8.60 (s, 1H), 7.93 (t_{br}, *J* = 7.9 Hz, 1H), 7.87 (d_{br}, *J* = 7.1 Hz, 1H), 4.23 (d, *J* = 5.5 Hz, 2H (reduced integration due to water suppression)), 3.45 (s, 3H), 3.25 – 3.16 (sept_{br}, 1H), 3.07 (s, 3H), 1.32 (d, *J* = 7.5 Hz, 6H). Assignment of CH₃ (8) and CH₃ (9) has been performed based on ¹H NOESY spectrum. **HRMS** (ESI⁺) m/z calcd. (most abundant mass peak) for C₁₈H₂₃N₄O₆S: 423.1333 (M+H)⁺; found: 423.1325.