Chemistry–A European Journal

Supporting Information

Generalizing the Aromatic δ -Amino Acid Foldamer Helix

Daniel Bindl, Pradeep K. Mandal, and Ivan Huc*

Contents

1 Supplementary figures		Supplementary figures	3	
2 Materials and Methods			7	
	2.1	General	7	
	2.2	Solid phase synthesis procedures	8	
	2.3	Monomer synthesis procedures	13	
3	Х	X-ray Crystallography 17		
4	Spectra and Chromatograms			
5	Literature		33	

List of Abbreviations

AcOH	acetic acid
CD	circular dichroism
CyHex	Cyclohexane
DCM	dichloromethane
DIAD	diisopropyl azodicarboxylate
DIPEA	N,N-diisopropylethylamine
DMAP	4-Dimethylaminopyridine
DMF	N,N-dimethylformamide
DMSO	dimethyl sulfoxide
EDC	1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide
EI	electron ionization
ESI	electrospray ionization
EtOAc	ethyl acetate
Fmoc	fluorenylmethoxycarbonyl
HMBC	heteronuclear multiple bond correlation
HMQC	heteronuclear multiple quantum correlation
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectrometry
MeOH	methanol
MW	molecular weight
NMR	nuclear magnetic resonance
RP	reversed phase
RT	room temperature
SPFS	solid phase foldamer synthesis
<i>t</i> BuOH	<i>tert</i> -butanol
TEA	triethylamine
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TIPS	triisopropyl silane
TLC	thin layer chromatography
TMSP	3-(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt
UV/Vis	ultraviolet-visible

1 Supplementary figures

Figure S1: Synthetic route to the Fmoc-**B**^{Acd}-OH monomer (**12**): i) methyl bromoacetate, K₂CO₃, acetonitrile, 70 °C (48%); ii) 1) Jones reagent, acetone, 2) *t*BuOH, EDC·HCl, DMAP, DMF (70%); iv) LiOH, H₂O, THF (quant.); v) H₂, Pd/C, Na₂CO₃, MeOH (quant.); vi) Fmoc-Cl, NaHCO₃, H₂O, 1,4-dioxane (76%). For detailed synthetic procedures see section 2.3.

Figure S2: Variable temperature ¹H NMR spectra of oligomer **1** (500 MHz, 0.6 mM in 12 mM NH₄OAc buffer pH 8.5 H_2O/D_2O 9:1, H_2O suppression).

Figure S3: Variable temperature ¹H NMR spectra of oligomer **2** (500 MHz, 0.26 mM in 12 mM NH₄OAc buffer pH 8.5 H₂O/D₂O 9:1, H₂O suppression).

Figure S4: Variable temperature ¹H NMR spectra of oligomer **3** (500 MHz, 0.16 mM in 12 mM NH₄OAc buffer pH 8.5 H₂O/D₂O 9:1, H₂O suppression).

Figure S5: Variable temperature ¹H NMR spectra of oligomer 4 (500 MHz, 0.18 mM in 12 mM NH₄OAc buffer pH 8.5 H_2O/D_2O 9:1, H_2O suppression).

Figure S6: Variable temperature ¹H NMR spectra of oligomer **5** (400 MHz, 0.6 mM in 60 mM ND₄ + 15 mM AcOH- d_4 in D₂O).

Figure S7: Variable temperature ¹H NMR spectra of oligomer **6** (25–80 °C: 500 MHz, 0.66 mM in 12 mM NH₄OAc buffer pH 8.5 H₂O/D₂O 9:1, H₂O suppression; 0–15 °C: 400 MHz, 0.66 mM in 60 mM ND₄ + 15 mM AcOH-d₄ in D₂O).

Figure S8: Variable temperature ¹H NMR spectra of oligomer 7 (500 MHz, 0.36 mM in 12 mM NH₄OAc buffer pH 8.5 H_2O/D_2O 9:1, H_2O suppression).

2 Materials and Methods

Figure S9: Fmoc-acid building blocks used in this study. Fmoc- \mathbf{Q}^{Ala} - $OH^{[1]}$, Fmoc- \mathbf{B}^{Gly} - $OH^{[2]}$ and Fmoc- \mathbf{P}^{Gly} - $OH^{[3]}$ have been described previously. For a detailed procedure to Fmoc- $\mathbf{B}^{\text{Acd}}(tBu)$ -OH, see section 2.3.

2.1 General

Commercial reagents (Suppliers: Abcr, Fisher Scientific, Merck, Sigma-Aldrich, TCI or VWR) were used without further purification unless otherwise stated. Wang resin LL (100-200 mesh) was purchased from Novabiochem, Cl-MPA ProTideTM resin LL was purchased from CEM. Peptide grade N,Ndimethylformamide (DMF) was purchased from Carlo Erba. Anhydrous chloroform, triethylamine (TEA) and N,N-diisopropylethylamine (DIPEA) were obtained via distillation over CaH₂ prior to use. Anhydrous tetrahydrofuran (THF) and dichloromethane (DCM) were obtained via an MBRAUN SPS-800 solvent purification system. Ultrapure water was obtained via a Sartorius arium® pro VF ultrapure water system. Reactions were monitored by thin layer chromatography (TLC) on Merck silica gel 60-F254 plates and observed under UV light. Column chromatography purifications were carried out on Merck GEDURAN Si60 (40-63 µm). Nuclear magnetic resonance (NMR) spectra were recorded on an Avance III HD 400MHz Bruker BioSpin spectrometer or an Avance III HD 500MHz Bruker BioSpin spectrometer equipped with a broad band observe 5-mm BB-H&FD CryProbeTM Prodigy. Measurements were performed at 25 °C unless stated otherwise. Water suppression was performed with excitation sculpting. Processing was done with MestReNova (v.12.0.0-20080) NMR processing software from Mestrelab Research. Chemical shifts are reported in ppm and calibrated via residual solvent signals or 3-(trimethylsilyl)propionic-2,2,3,3-d₄ acid sodium salt (TMSP) when water suppression was applied.^[4] Signal multiplicities are abbreviated as s, singlet; d, doublet; t, triplet; q, quartet, and m, multiplet. Signals were assigned using ¹H-¹³C HMQC and ¹H-¹³C HMBC spectra. Electrospray ionization (ESI) mass spectra were recorded on Bruker microTOF II and Thermo Finnigan LTO FT Ultra spectrometers. Electron ionization (EI) mass spectra were recorded on a Thermo Q

Exactive GC Orbitrap or a Finnigan MAT 95 sector mass spectrometer. Analytical and semi-preparative reversed phase (RP) high performance liquid chromatography (HPLC) was performed on a Thermo Fisher Scientific Ultimate 3000 HPLC System using Macherey-Nagel Nucleodur C18 Gravity columns $(4 \times 100 \text{ mm}, 5 \mu\text{m} \text{ and } 10 \times 250 \text{ mm}, 5 \mu\text{m})$ and Macherey-Nagel Nucleodur C8 Gravity columns $(4 \times 50 \text{ mm}, 5 \mu\text{m} \text{ and } 10 \times 100 \text{ mm}, 5 \mu\text{m})$. UV absorbance was monitored at 300 nm if not stated otherwise. Simple ultraviolet–visible (UV/Vis) absorbance measurements were done with a Thermo Fisher Scientific Nanodrop One instrument using a 1 cm quartz cuvette. Circular dichroism (CD) spectra were measured on a Jasco J-810 spectrometer. Measurements were performed at 20 °C if not stated otherwise. Manual microwave-assisted solid-phase foldamer synthesis (SPFS) was performed via a CEM® Discover Bio microwave peptide synthesizer. The temperature within the reactor vessel was monitored with an optical fiber probe. Automated SPFS was done via a Gyros Protein Technologies PurePep Chorus synthesizer with induction heating.

2.2 Solid phase synthesis procedures

Oligomers were synthesized according to previously reported SPFS protocols,^[5] hereafter referred to as standard method. Fmoc acid building blocks were activated *in situ* by generating the respective acid chlorides prior to coupling.

Acetylation: In the microwave vessel: after the resin (1.0 equiv.) was washed with anhydrous THF (4 \times), DIPEA (10.0 equiv.) and acetyl chloride (5.0 equiv.) in anhydrous THF (1 mL per 100 mg resin; not less than 2 mL) were added and the suspension was heated to 50 °C for 15 min (25 W, ramp to 50 °C over 5 min, hold at 50 °C for 15 min). The resin was washed with anhydrous THF (3 \times) and the coupling step was repeated once. Then, the resin was washed again with anhydrous THF (1 \times) and DMF (5 \times), and kept suspended in DMF (if stored longer than 24 h, it was kept at 4 °C).

Compound 1: Oligomer **1** was synthesized on Wang resin (0.37 mmol g^{-1} , 27.8 µmol scale) according to the standard method (automated). Loading of the first monomer: 0.25 mmol g^{-1} (68%). The final acetyl group was installed via the general acetylation method. After purification by semi-prep HPLC (C18, 0–30B, 50 °C; A: 13 mmol NH₄OAc buffer pH 8.5, B: acetonitrile), the title compound was

obtained as a white solid (13.8 mg, 6.8 µmol, 24%; HPLC-purity: 97.5%). ¹**H** NMR (500 MHz, 12 mmol NH₄OAc buffer pH 8.5 in H₂O/D₂O 9:1): δ = 10.19 (s, 1H), 10.13 (s, 1H), 9.75 (s, 1H), 9.64 (s, 1H), 9.52 (s, 1H), 9.44 (s, 1H), 9.41 (s, 1H), 9.38 (s, 1H), 9.31 (s, 1H), 8.98 (s, 1H), 8.68 (d, *J* = 8.40 Hz, 1H), 8.42 (s, 1H), 8.33 (s, 1H), 8.12 (s, 1H), 8.02 (d, *J* = 2.01 Hz, 1H), 7.85 (s, 1H), 7.83 (s, 1H), 7.82 – 7.79 (m, 2H), 7.78 (d, *J* = 4.48 Hz, 1H), 7.75 (s, 1H), 7.73 (s, 1H), 7.71 (s, 1H), 7.69 (d, *J* = 4.22 Hz, 1H), 7.67 (s, 1H), 7.65 (s, 1H), 7.59 (s, 1H), 7.58 – 7.55 (m, 1H), 7.54 (s, 1H), 7.53 – 7.48 (m, 1H), 7.48 – 7.42 (m, 1H), 7.38 (td, *J* = 8.61, 3.80 Hz, 1H), 7.28 (t, *J* = 8.64 Hz, 1H), 7.19 (t, *J* = 8.91 Hz, 1H), 7.06 (s, 1H), 6.94 (d, *J* = 10.04 Hz, 1H), 6.75 (d, *J* = 9.33 Hz, 1H), 6.60 (d, *J* = 9.56 Hz, 1H), 6.53 (s, 1H), 6.51 (s, 1H), 6.30 (d, *J* = 9.75 Hz, 1H), 6.20 (s, 1H), 6.18 (s, 1H), 6.13 (s, 1H), 4.28 (d, *J* = 13.23 Hz, 1H), 4.22 (d, *J* = 15.24 Hz, 1H), 2.55 (d, *J* = 12.82 Hz, 1H), 2.46 (d, *J* = 16.20 Hz, 1H), 2.40 (d, *J* = 18.53 Hz, 1H), 2.27 (d, *J* = 14.44 Hz, 1H), 1.51 (s, 3H). HRMS (ESI[¬]) *m*/z calcd. for C₁₀₂H₇₈N₁₅O₃₂: 2024.4943 (M-H)[¬]; found: 2024.5504.

Compound 2: Oligomer **2** was synthesized on Wang resin (0.37 mmol g⁻¹, 27.8 µmol scale) according to the standard method (automated). Loading of the first monomer: 0.37 mmol g^{-1} (quant.). The final acetyl group was installed via the general acetylation method. After purification by semi-prep HPLC (C18, 0–15B, 50 °C; A: 13 mmol NH₄OAc buffer pH 8.5, B: acetonitrile), the title compound was obtained as a white solid (14.1 mg, 5.88 µmol, 21%; HPLC-purity: 99.9%). ¹H NMR (500 MHz, 12 mmol NH₄OAc buffer pH 8.5 in H₂O/D₂O 9:1): δ = 10.10 (s, 1H), 10.02 (s, 1H), 9.63 (s, 1H), 9.43 (s, 3H), 9.39 (s, 1H), 9.25 (s, 1H), 9.07 (s, 1H), 8.81 (s, 1H), 8.47 (d, J = 2.17 Hz, 1H), 8.46 (d, J = 2.10 Hz, 1H), 8.41 (s, 1H), 8.39 (s, 1H), 8.35 (s, 1H), 8.20 – 8.14 (m, 2H), 8.10 (d, *J* = 8.62 Hz, 1H), 8.07 (d, *J* = 9.23 Hz, 1H), 8.01 (d, *J* = 9.28 Hz, 1H), 7.98 – 7.86 (m, 6H), 7.81 (d, *J* = 7.91 Hz, 1H), 7.72 – 7.64 (m, 2H), 7.63 (s, 1H), 7.61 (s, 13H), 7.60 – 7.57 (m, 2H), 7.56 (s, 2H), 7.51 (td, *J* = 8.46, 3.44 Hz, 2H), 7.30 – 7.23 (m, 1H), 7.19 (s, 1H), 6.84 (d, J = 9.41 Hz, 1H), 6.80 (s, 1H), 6.59 (d, J = 9.39 Hz, 1H), 6.52 -6.43 (m, 4H), 6.42 (s, 1H), 6.38 (s, 1H), 6.32 (d, J = 9.40 Hz, 1H), 5.92 (d, J = 9.39 Hz, 1H), 4.27 (s, 1H), 4.17 (s, 2H), 4.00 (s, 5H), 3.92 (s, 3H), 3.90 (s, 1H), 3.71 (d, J = 15.54 Hz, 1H), 3.51 (d, J = 16.12Hz, 1H), 3.46 (d, *J* = 15.78 Hz, 1H), 3.39 (d, *J* = 15.74 Hz, 1H), 2.95 (d, *J* = 15.86 Hz, 2H), 2.61 (d, *J* = 13.15 Hz, 1H), 2.06 (d, J = 13.51 Hz, 1H), 1.75 (d, J = 15.83 Hz, 1H), 1.65 (s, 3H), 1.57 (d, J = 15.54 Hz, 1H), 1.41 (d, J = 15.05 Hz, 1H), 1.30 (d, J = 11.21 Hz, 2H). HRMS (ESI⁻) m/z calcd. for C₁₁₈H₉₁N₁₆O₄₂: 2403.5482 (M-H)⁻; found: 2403.6165.

Compound 3: Oligomer **3** was synthesized on Wang resin (0.37 mmol g⁻¹, 27.8 µmol scale) according to the standard method (automated). Loading of the first monomer: 0.37 mmol g^{-1} (quant.). The final acetyl group was installed via the general acetylation method. After purification by semi-prep HPLC (C18, 0–20B, 50 °C; A: 13 mmol NH₄OAc buffer pH 8.5, B: acetonitrile), the title compound was obtained as a white solid (3.99 mg, 1.76 µmol, 6.3%; HPLC-purity: 98.8%). ¹H NMR (500 MHz, 12 mmol NH₄OAc buffer pH 8.5 in H₂O/D₂O 9:1): $\delta = 10.40$ (s, 1H), 9.97 (s, 1H), 9.83 (s, 1H), 9.76 (s, 1H), 9.62 (s, 2H), 8.86 (s, 1H), 8.49 (d, J = 10.09 Hz, 1H), 8.27 (d, J = 2.16 Hz, 1H), 8.25 (d, J = 8.52 Hz, 1H), 8.18 (s, 1H), 8.12 (d, *J* = 8.39 Hz, 1H), 8.09 (d, *J* = 8.62 Hz, 1H), 8.06 – 7.99 (m, 5H), 7.96 (dd, J = 9.19, 6.35 Hz, 2H), 7.92 (d, J = 9.61 Hz, 1H), 7.86 (d, J = 9.93 Hz, 1H), 7.83 (d, J = 9.68 Hz, 1H), 7.80 (d, J = 9.05 Hz, 1H), 7.78 – 7.73 (m, 1H), 7.72 – 7.68 (m, 2H), 7.68 – 7.64 (m, 1H), 7.63 (s, 1H), 7.61 (d, J = 6.30 Hz, 1H), 7.58 (s, 1H), 7.58 – 7.52 (m, 4H), 7.52 – 7.49 (m, 1H), 7.49 – 7.45 (m, 1H), 7.44 (d, J = 2.15 Hz, 1H), 7.25 – 7.15 (m, 3H), 7.14 (d, J = 1.62 Hz, 1H), 7.13 (s, 1H), 7.11 (s, 1H), 7.09 (s, 1H), 7.07 (s, 1H), 7.05 (d, J = 9.56 Hz, 1H), 7.02 (s, 1H), 7.00 (d, J = 4.38 Hz, 1H), 6.97 (d, J = 4.38 Hz, 1H), 6. = 8.06 Hz, 1H), 6.74 (d, J = 9.37 Hz, 1H), 6.60 (d, J = 9.30 Hz, 1H), 6.45 (dt, J = 10.81, 5.44 Hz, 4H), 6.38 – 6.31 (m, 3H), 6.23 (d, J = 9.52 Hz, 1H), 6.17 (d, J = 9.53 Hz, 1H), 4.31 (s, 1H), 4.26 (d, J = 14.51 Hz, 1H), 4.14 (s, 2H), 4.03 (d, J = 15.33 Hz, 1H), 3.96 (s, 3H), 3.94 (s, 3H), 3.89 (d, J = 14.91 Hz, 1H), 3.70 (d, J = 15.91 Hz, 1H), 3.56 (t, J = 15.60 Hz, 2H), 3.30 (d, J = 18.89 Hz, 2H), 2.70 (d, J = 15.56 Hz, 2H), 2. 1H), 2.50 (d, J = 15.66 Hz, 1H), 2.42 (d, J = 13.68 Hz, 1H), 2.18 (d, J = 14.77 Hz, 1H), 1.55 (s, 3H), 1.47 (d, J = 15.82 Hz, 2H), 1.17 (d, J = 15.64 Hz, 1H). HRMS (ESI⁻) m/z calcd. for C₁₁₃H₉₀N₁₅O₃₈: 2264.5577 (M-H)⁻; found: 2264.6101.

Compound 4: Oligomer 4 was synthesized on ProTideTM resin (0.15 mmol g^{-1} , 25 µmol scale) according to the standard method (automated). Loading of the first monomer: 0.15 mmol g^{-1} (quant.). The final acetyl group was installed via the general acetylation method. After purification by semi-prep HPLC (C18, 0–5B, 50 °C; A: 13 mmol NH₄OAc buffer pH 8.5, B: acetonitrile), the title compound was obtained as a white solid (4.15 mg, 1.8 µmol, 7.2%; HPLC-purity: 90.31%). ¹H NMR (500 MHz, 12 mmol NH₄OAc buffer pH 8.5 in H₂O/D₂O 9:1): δ = 10.00 (s, 1H), 9.97 (s, 1H), 9.90 (s, 1H), 9.76 (s, 1H), 9.04 (s, 1H), 8.85 (s, 1H), 8.56 (s, 1H), 8.54 (s, 1H), 8.49 (s, 1H), 8.46 (s, 1H), 8.31 (s, 1H), 8.30 -8.24 (m, 2H), 8.18 (s, 1H), 8.08 - 8.00 (m, 2H), 7.92 (d, J = 10.34 Hz, 3H), 7.88 (d, J = 10.43 Hz, 1H), 7.74 (s, 1H), 7.71 (d, J = 10.15 Hz, 1H), 7.68 – 7.60 (m, 4H), 7.58 (d, J = 10.15 Hz, 1H), 7.54 (d, J = 10.68 Hz, 1H), 7.53 (s, 1H), 7.52 – 7.46 (m, 4H), 7.26 (t, J = 8.48 Hz, 1H), 7.22 – 7.14 (m, 2H), 7.11 (t, J = 8.40 Hz, 1H), 7.01 (s, 1H), 6.92 (d, J = 9.41 Hz, 1H), 6.75 (d, J = 9.51 Hz, 1H), 6.72 (d, J = 9.38Hz, 1H), 6.68 (d, J = 9.60 Hz, 1H), 6.64 (d, J = 9.32 Hz, 1H), 6.53 (d, J = 9.60 Hz, 1H), 6.51 – 6.47 (m, 2H), 6.45 (d, J = 9.37 Hz, 1H), 6.36 (d, J = 9.42 Hz, 1H), 6.33 (d, J = 9.90 Hz, 2H), 6.31 (s, 1H), 4.35 (d, J = 15.53 Hz, 1H), 4.30 - 4.20 (m, 1H), 4.16 - 4.06 (m, 1H), 4.03 (d, J = 9.62 Hz, 1H), 3.97 (s, 3H),3.93 (s, 3H), 3.88 (d, *J* = 14.97 Hz, 1H), 3.74 (d, *J* = 16.58 Hz, 1H), 3.61 (d, *J* = 16.36 Hz, 3H), 3.33 (d, J = 16.44 Hz, 1H), 3.13 (d, J = 15.02 Hz, 1H), 2.76 (d, J = 16.02 Hz, 1H), 2.49 (d, J = 13.58 Hz, 1H), 2.34 (d, J = 15.12 Hz, 1H), 2.25 - 2.22 (m, 1H), 2.20 (d, J = 15.54 Hz, 1H), 2.14 (d, J = 16.26 Hz, 1H), 1.63 (s, 3H), 1.32 (d, J = 16.40 Hz, 1H). **HRMS** (ESI⁻) m/z calcd. for C₁₁₂H₈₉N₁₄O₄₂: 2301.5264 (M-H)⁻; found: 2301.3943.

Compound 5: Oligomer **5** was synthesized on Wang resin (0.37 mmol g⁻¹, 27.8 µmol scale) according to the standard method (manual). Loading of the first monomer: 0.25 mmol g⁻¹ (68%). The final acetyl group was installed via the general acetylation method. After purification by semi-prep HPLC (C18, 0– 15B, 50 °C; A: 13 mmol NH₄OAc buffer pH 8.5, B: acetonitrile), the title compound was obtained as a white solid (9.03 mg, 4.46 µmol, 16%; HPLC-purity: 95.4%). ¹H NMR (500 MHz, 12 mmol NH₄OAc buffer pH 8.5 in H₂O/D₂O 9:1): δ = 9.32 (s, 1H), 9.20 (s, 1H), 8.34 (s, 1H), 8.30 (s, 1H), 8.13 (s, 3H), 8.11 (s, 1H), 8.08 – 8.00 (m, 4H), 7.92 (s, 1H), 7.83 (s, 1H), 7.71 – 7.59 (m, 8H), 7.56 (d, *J* = 8.97 Hz, 1H), 6.97 (d, *J* = 9.71 Hz, 1H), 6.93 (d, *J* = 9.53 Hz, 1H), 6.89 – 6.76 (m, 7H), 6.60 (d, *J* = 9.58 Hz, 1H),

4.37 (s, 2H), 4.27 (s, 4H), 4.20 (s, 2H), 4.19 (s, 2H), 4.04 (s, 4H), 2.01 (s, 5H). **HRMS** (ESI⁻) *m/z* calcd. for C₉₂H₇₃N₁₀O₄₂: 1989.3889 (M-H)⁻; found: 1989.4469.

Compound 6: Oligomer **6** was synthesized on Wang resin (0.37 mmol g⁻¹, 24 µmol scale) according to the standard method (automated). Loading of the first monomer: 0.37 mmol g⁻¹ (quant.). The final acetyl group was installed via the general acetylation method. After purification by semi-prep HPLC (C18, 0–10B, 50 °C; A: 13 mmol NH₄OAc buffer pH 8.5, B: acetonitrile), the title compound was obtained as a white solid (14.8 mg, 7.33 µmol, 31%; HPLC-purity: 95.5%). ¹**H NMR** (500 MHz, 12 mmol NH₄OAc buffer pH 8.5 in H₂O/D₂O 9:1): δ = 10.15 (s, 1H), 10.01 (s, 1H), 9.44 (s, 1H), 9.36 (s, 1H), 9.15 (s, 1H), 9.09 (s, 1H), 8.38 (d, *J* = 2.19 Hz, 1H), 8.23 (dd, *J* = 10.50, 2.12 Hz, 2H), 8.17 (d, *J* = 2.18 Hz, 1H), 8.11 (dd, *J* = 4.03, 2.17 Hz, 2H), 8.08 (t, *J* = 4.25 Hz, 1H), 8.04 – 8.00 (m, 1H), 8.00 (d, *J* = 4.71 Hz, 1H), 7.98 (d, *J* = 4.86 Hz, 0H), 7.94 (d, *J* = 8.14 Hz, 1H), 7.90 (d, *J* = 8.19 Hz, 1H), 7.83 (t, *J* = 8.20 Hz, 1H), 7.77 – 7.70 (m, 6H), 7.66 – 7.59 (m, 2H), 7.59 – 7.54 (m, 1H), 7.31 (s, 1H), 7.30 (s, 0H), 7.28 (d, *J* = 3.69 Hz, 1H), 7.20 (d, *J* = 6.03 Hz, 2H), 7.19 (d, *J* = 6.91 Hz, 2H), 7.14 (d, *J* = 8.69 Hz, 1H), 7.07 (d, *J* = 9.18 Hz, 1H), 6.41 (d, *J* = 9.05 Hz, 1H), 4.54 (s, 0H), 4.39 (s, 0H), 1.77 (s, 4H). **HRMS** (ESI[¬]) m/z calcd. for C₉₈H₈₁N₁₈O₃₂: 2021.5270 (M-H)[¬]; found: 2021.6454.

Compound 7: Oligomer 7 was synthesized on ProTideTM resin (0.15 mmol g⁻¹, 25 µmol scale) according to the standard method (automated). Loading of the first monomer: 0.15 mmol g⁻¹ (quant.). The final acetyl group was installed via the general acetylation method. After purification by semi-prep HPLC (C18, 0–10B, 50 °C; A: 13 mmol NH₄OAc buffer pH 8.5, B: acetonitrile), the title compound

was obtained as a white solid (12.0 mg, 5.4 µmol, 22%; HPLC-purity: 95.7%). ¹**H** NMR (500 MHz, 12 mmol NH₄OAc buffer pH 8.5 in H₂O/D₂O 9:1): δ = 10.77 (s, 1H), 10.05 (s, 1H), 10.01 (s, 1H), 9.92 (s, 1H), 9.20 (s, 2H), 8.74 (s, 1H), 8.56 (s, 1H), 8.23 – 8.15 (m, 4H), 8.05 – 8.01 (m, 1H), 8.00 (d, *J* = 7.09 Hz, 1H), 7.96 (d, *J* = 8.26 Hz, 1H), 7.93 (d, *J* = 8.15 Hz, 1H), 7.90 (s, 1H), 7.87 (d, *J* = 8.41 Hz, 1H), 7.81 (d, *J* = 2.03 Hz, 1H), 7.78 (d, *J* = 7.64 Hz, 1H), 7.75 (s, 1H), 7.74 – 7.70 (m, 4H), 7.69 (s, 1H), 7.66 – 7.60 (m, 3H), 7.54 (t, *J* = 8.23 Hz, 1H), 7.51 – 7.45 (m, 3H), 7.42 (d, *J* = 8.50 Hz, 1H), 7.38 (d, *J* = 7.92 Hz, 2H), 7.32 – 7.26 (m, 3H), 7.25 (d, *J* = 8.25 Hz, 1H), 7.17 – 7.11 (m, 2H), 7.08 (d, *J* = 9.50 Hz, 3H), 6.98 (d, *J* = 8.60 Hz, 1H), 6.93 (d, *J* = 9.38 Hz, 1H), 6.08 (s, 1H), 4.55 (s, 1H), 4.41 – 4.23 (m, 1H), 4.10 (d, *J* = 17.84 Hz, 1H), 4.02 (d, *J* = 15.87 Hz, 1H), 3.94 (d, *J* = 17.40 Hz, 1H), 3.88 (s, 3H), 3.84 (d, *J* = 14.03 Hz, 1H), 3.72 (d, *J* = 15.35 Hz, 2H), 3.55 (d, *J* = 15.01 Hz, 1H), 3.40 (d, *J* = 20.37 Hz, 1H), 3.23 (d, *J* = 20.11 Hz, 1H), 3.17 – 3.04 (m, 1H), 2.92 (d, *J* = 15.61 Hz, 1H), 2.63 – 2.47 (m, 3H), 2.31 (d, *J* = 21.86 Hz, 1H), 2.26 – 2.10 (m, 2H), 1.75 (s, 3H). **HRMS** (ESI[–]) *m*/z calcd. for C₁₀₉H₈₉N₂₀O₃₄: 2221.5856 (M-H)[–]; found: 2221.4344.

2.3 Monomer synthesis procedures

Compound 8: 4-hydroxy-3-nitrobenzaldehyde (8.40 g, 50.3 mmol, 1.0 equiv.) and K₂CO₃ (7.64 g, 55.3 mmol, 1.1 equiv.) was suspended in acetonitrile (300 ml). After the addition of methyl bromoacetate (5.23 ml, 55.3 mmol, 1.1 equiv.), the reaction mixture was stirred at 70 °C for 15 h under N₂ atmosphere. The resulting suspension was filtered, washed with acetonitrile and the filtrate evaporated *in vacuo*. Then, the residue was dissolved in water and CHCl₃. After the organic phase was removed, the aqueous phase was extracted with CHCl₃ (2×), the combined organic phases were washed with brine, dried over MgSO₄, evaporated *in vacuo*, and the residue was dried under high vacuum overnight. Finally, it was redissolved in a minimum amount of DCM. Et₂O was added until precipitation occurred. The solution was kept at 4 °C for 2 h, filtered and washed with cold Et₂O yielding the final compound (5.79 g, 24.2 mmol, 48%) as an off white crystalline solid. (C₁₀H₉NO₆; MW = 239.18 g mol⁻¹). **R**_{*f*} (CyHex/EtOAc 6:4) = 0.34. ¹**H NMR** (500 MHz, CDCl₃): δ = 9.95 (s, 1H, C10-H), 8.39 (d, *J* = 2.05 Hz, 1H, C3-H), 8.06 (dd, *J* = 8.69, 2.10 Hz, 1H, C5-H), 7.09 (d, *J* = 8.68 Hz, 1H, C6-H), 4.90 (s, 2H; C7-H), 3.83 (s, 3H, C9-H). ¹³**C NMR** (126 MHz, CDCl₃): δ = 188.7 (C10), 167.5 (C8), 155.4 (C1), 140.4 (C2), 134.5 (C5), 130.2 (C4), 127.8 (C3), 114.9 (C6), 66.2 (C7), 52.9 (C9). **HRMS**

(ESI⁻) m/z calcd. for C₁₀H₉NO₆Cl: 274.0124 (M+Cl)⁻; Found: 274.0124. (Modified literature procedure^[6]; analytical data is in line with the literature).

Compound 9: Compound 8 (19.6 g, 81.9 mmol, 1.0 equiv.) was dissolved in acetone (150 ml). Jones reagent (2 M CrO₃ in 6 M H₂SO_{4 (aq.)}) was added dropwise at 23 °C until the starting material was consumed by TLC analysis (45 ml). Remaining Jones reagent was quenched by adding an excess of *i*PrOH and the suspension was filtered and washed with acetone. The solvent was evaporated under reduced pressure, and the residue was redissolved in DCM (THF may be added to help solubilization). H_2O was added, the organic phase removed, and the aqueous phase extracted with DCM (2×). The combined organic phases were dried over MgSO₄ and evaporated *in vacuo* to give the crude carboxylic acid (20.3 g with 20% impurity by NMR). Then, the solid was redissolved in anhydrous DMF (105 ml) under N₂ atmosphere. tBuOH (22.4 ml, 239 mmol, 3.0 equiv.), EDC·HCl (22.9 g, 119 mmol, 1.5 equiv.) and DMAP (9.74 g, 79.6 mmol, 1.0 equiv.) were added at 0 °C and the reaction mixture was stirred at 23 °C for 15 h. After evaporating the solvents *in vacuo*, the residue was dissolved in EtOAc and H₂O. The organic phase was removed, and the aqueous phase was extracted with EtOAc $(2\times)$. Combined organic phases were washed with sat. NH₄Cl (aq.) and brine, dried over Na₂SO₄ and evaporated *in vacuo*. After purification by column chromatography (SiO₂, CyHex/EtOAc 8:2), the title compound (17.8 g, 57.2 mmol, 70%) was obtained as a white solid ($C_{14}H_{17}NO_7$; MW = 311.29 g mol⁻¹). \mathbf{R}_f (CyHex/EtOAc 8:2 = 0.20. ¹**H NMR** (500 MHz, CDCl₃): δ = 8.45 (d, J = 2.15 Hz, C3-H), 8.14 (dd, J = 8.75, 2.16 Hz, 1H, C5-H), 6.97 (d, J = 8.82 Hz, 1H, C6-H), 4.85 (s, 2H, C7-H), 3.81 (s, 3H, C9-H), 1.59 (s, 9H, C12-H, C13-H, C14-H). ¹³C NMR (126 MHz, CDCl₃): $\delta = 167.8$ (C8), 163.4 (C10), 154.0 (C1), 139.9 (C2), 135.0 (C5), 127.4 (C3), 126.0 (C4), 114.1 (C6), 82.4 (C11), 66.3 (C7), 52.8 (C9), 28.3 (C12, C13, C14). **HRMS** (ESI⁻) *m/z* calcd. for C₁₄H₁₇NO₇Cl: 346.0699 (M+Cl)⁻; Found: 346.0702. (Modified literature procedure^[6]; analytical data is in line with the literature).

Compound 10: Compound **9** (17.8 g, 57.2 mmol, 1.0 equiv.) was dissolved in THF (800 ml) and cooled to 0 °C. LiOH (1.37 g, 57.2 mmol, 1.0 equiv.) in H₂O (200 ml) was added and the reaction mixture was stirred at 0 °C for 30 min. After the addition of citric acid $_{(aq.)}$ (1 M, 57.2 ml, 1 equiv.) the mixture was

extracted with DCM (3×). The combined organic phases were washed with brine, dried over Na₂SO₄ and solvents were removed *in vacuo*. The final product (17.0 g, 57.2 mmol, quant.) was obtained as a white solid. (C₁₃H₁₅NO₇; MW = 297.26 g mol⁻¹). **R**_{*f*} (DCM/MeOH 95:5 + 1% AcOH) = 0.51. ¹**H NMR** (400 MHz, DMSO-d₆): δ = 13.34 (s, 1H, O9-H), 8.30 (d, *J* = 2.18 Hz, 1H, C3-H), 8.09 (dd, *J* = 8.88, 2.23 Hz, 1H, C5-H), 7.38 (d, *J* = 8.93 Hz, 1H, C6-H), 5.02 (s, 2H, C7-H), 1.55 (s, 9H, C12-H, C13-H, C14-H). ¹³**C NMR** (101 MHz, DMSO-d₆): δ = 168.9 (C8), 163.0 (C10), 153.7 (C1), 139.2 (C2), 134.4 (C5), 125.7 (C3), 123.9 (C4), 115.3 (C6), 81.6 (C11), 65.6 (C7), 27.7 (C12, C13, C14). **HRMS** (ESI⁻) *m/z* calcd. for C₁₃H₁₄NO₇: 296.0776 (M-H)⁻; Found: 296.0776. (Modified literature procedure^[6]; analytical data is in line with the literature).

Compound 11: Compound **10** (17.0 g, 57.2 mmol, 1.0 equiv.) and Na₂CO₃ (6.28 g, 57.2 mmol, 1.0 equiv.) were dissolved in MeOH (750 ml). The solution was quickly degassed by vacuum N₂ cycles (3×), then Pd/C (1.70 g, 10 wt. % loading) was added and the N₂ atmosphere was replaced by H₂. After stirring for 7 h the reaction mixture was filtered over celite©, washed with MeOH and solvents were removed *in vacuo*. The crude product (16.5 g, 57.2 mmol, quant.) was obtained as a slightly brown solid and was used in the next step without further purification. (C₁₃H₁₆NO₅Na; MW = 289.26 g mol⁻¹). **R**_{*f*} (EtOH) = 0.60. ¹**H**-**NMR** (400 MHz, DMSO-d₆): δ = 7.16 (d, *J* = 2.12 Hz, 1H, C3-H), 7.05 (dd, *J* = 8.30, 2.17 Hz, 1H, C5-H), 6.62 (d, *J* = 8.38 Hz, 1H, C6-H), 4.96 (s, 2H, N15-H), 4.11 (s, 2H, C7-H), 1.50 (s, 9H, C12-H, C13-H, C14-H). ¹³**C**-**NMR** (101 MHz, DMSO-d₆): δ = 170.5 (C8), 165.5 (C10), 150.3 (C1), 138.0 (C2), 123.3 (C4), 118.2 (C5), 113.9 (C3), 111.8 (C6), 79.3 (C11), 69.2 (C7), 27.9 (C12, C13, C14). **HRMS** (ESI⁻) *m*/*z* calcd. for C₁₃H₁₆NO₅: 266.1034 (M-H)⁻; Found: 266.1033.

Compound 12: Compound **11** (16.5 g, 57.2 mmol, 1.0 equiv.) was added to NaHCO₃ (24.0 g, 286 mmol, 5.0 equiv.) in H₂O (400 ml). After the suspension was cooled to 0 °C, Fmoc-Cl (19.2 g, 74.4 mmol, 1.3 equiv.) in 1,4-dioxane (400 ml) was added dropwise at 0 °C over 1 h. The reaction mixture was stirred at 0 °C for 1 h, then at 23 °C for 15 h. After acidifying to pH 2 using citric acid (aq.) (1 M) the mixture was extracted with DCM (3×). The combined organic phases were washed with brine, dried over MgSO₄ and solvents were evaporated *in vacuo*. The crude product was purified by trituration:

the residue was dissolved in a minimal amount of THF, a larger amount of Et₂O was added and the suspension was cooled to 4 °C over night to help precipitation. The suspension was filtered and washed with cold Et₂O. This procedure was repeated once yielding the title compound (21.9 g, 44.8 mmol, 76%, HPLC purity: 99%) as a white solid (C₂₈H₂₇NO₇; MW = 489.52 g mol⁻¹). **R**_{*f*} (EtOAc/MeOH 98:2 + 1% AcOH) = 0.36. ¹**H NMR** (500 MHz, DMSO-d₆): δ = 13.20 (s, 1H, O9-H), 8.88 (s, 1H, N15-H), 8.28 (s, 1H, C3-H), 7.91 (d, *J* = 7.62 Hz, 2H, C22-H, C23-H), 7.76 (d, *J* = 7.50 Hz, 2H, C19-H, C26-H), 7.62 (dd, *J* = 8.58, 2.16 Hz, 1H, C5-H), 7.43 (t, *J* = 7.50 Hz, 2H, C21-H, C24-H), 7.34 (t, *J* = 7.47 Hz, 2H, C20-H, C25-H), 7.06 (d, *J* = 8.70 Hz, 1H, C6-H), 4.83 (s, 2H, C7-H), 4.41 (d, *J* = 7.26 Hz, 2H, C17-H), 4.31 (t, *J* = 7.18 Hz, 1H, C18-H), 1.52 (s, 9H, C12-H, C13-H, C14-H). ¹³C NMR (126 MHz, DMSO-d₆): δ = 169.8 (C8), 164.5 (C10), 153.7 (C16), 152.1 (C1), 143.7 (C18a, C26a), 140.7 (C22a, C22b, 127.7 (C2), 127.4 (C20, C25), 127.1 (C5), 125.7 (C19, C26), 125.4 (C4), 121.8 (C3), 120.2 (C22, C23), 112.5 (C6), 80.3 (C11), 66.3 (C17), 65.7 (C7), 46.5 (C18), 27.8 (C12, C13, C14). **HRMS** (ESI⁺) *m*/*z* calcd. for C₂₈H₂₈NO₇: 490.1860 (M+H)⁺; Found: 490.1863.

3 X-ray Crystallography

Aqueous solutions of compounds **1** and **6** were prepared from lyophilized samples to final concentrations of 2 mM (in 15 mM NH4OAc buffer pH 8.5) and 8 mM (in H₂O) respectively. Crystallization screening trials were carried out by vapor diffusion method using commercial sparse matrix screens at 293 K.^[7] Diffraction-quality crystals of **1** (Figure S10a) was obtained by sitting drop method by adding 1 μ L of 1 and 2 μ L of the reservoir solution containing 20% w/v polyethylene glycol 8000, 10 mM TRIS buffer (pH 7.5), and 10 mM calcium chloride. Volume of reservoir solution was 500 μ L. Diffraction-quality crystals (Figure S10b) of **6** was obtained by hanging drop method by adding 1.2 μ L of **6** and 1.8 μ L of the reservoir solution containing 30% v/v polyethylene glycol 400, 100 mM HEPES buffer (pH 7.5), and 200 mM calcium chloride. 400 μ L of the reservoir solution was layered by 100 μ L of Silicon oil to slow the rate of vapor diffusion.^[8] Single crystals of **1** were fished using MiTeGen microloops, quickly soaked in a cryo-protectant solution of 20% w/v polyethylene glycol 8000 and 40% v/v polyethylene glycol 400 and flash frozen in liquid nitrogen. Single crystals of **6** were fished and directly plunged into liquid nitrogen without cryo-protection.

Synchrotron data for **1** and **6** were collected at P14 and P13^[9] beam lines operated by EMBL Hamburg at the Petra III storage ring (DESY, Hamburg, Germany) using EIGER 16M detector. Diffraction data for **1** was processed using $xia2^{[10]}$ with $DIALS^{[11]}$ for integration and using *Pointless/Aimless*^[12] for scaling and merging respectively. Diffraction data for **6** was processed using *CrysAlis^{Pro}*.* Both structures were solved using dual space method with the program *ShelxD*^[13] and refined by a full-matrix least squares method on F² with *ShelxL*-2014^[14] within *Olex2* suite.^[15] The initial structures of both **1** and **6** revealed most of the main-chain atoms. After each refinement step, visual inspection of the model and the electron-density maps were carried out using *Olex2* and *Coot*.^[16] AFIX, DFIX, EADP, SADI and FLAT instructions were used to improve the geometry of molecules and temperature parameters. All non-H atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed at idealized positions. Restraints on anisotropic displacement parameters were implemented with DELU, SIMU, RIGU and ISOR instructions. In the final stage of refinement *SQUEEZE*^[17] procedure from Platon suite was introduced to remove unmodeled electron density.

Statistics of data collection and refinement are described in Table S1. The final cif file was checked using IUCr's checkcif algorithm. Due to large volume fractions of disordered solvent molecules, weak diffraction intensity and poor resolution, a number of A- and B-level remain in the checkcif file. These alerts are inherent to the data and refinement procedures and illustrate the limited practicality of the checkcif tool for medium- size molecule crystallography. They are listed below and have been divided into two groups. The first group illustrates weak quality of the data and refinement statistics if compared to that expected for small molecule structures from highly diffracting crystals. The second group is

^{*} Agilent, CrysAlisPRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England (2014).

connected to decisions made during refinement and explained below. Atomic coordinates and structure factors for **1** and **6** were deposited in the Cambridge Crystallographic Data Centre (CCDC) with accession codes 2125508 and 2125515 respectively. The data is available free of charge upon request (www.ccdc.cam.ac.uk/).

CheckCIF validation of 1:

Group 1 alerts:

THETM01_ALERT_3_A	The value of sine(theta_max)/wavelength is less than 0.550
PLAT029_ALERT_3_A _	diffrn_measured_fraction_theta_full value Low. Why?
PLAT084_ALERT_3_A	High wR2 Value (i.e. > 0.25) 0.36 Report
PLAT242_ALERT_2_B	Low 'MainMol' Ueq as Compared to Neighbors
PLAT250_ALERT_2_B	Large U3/U1 Ratio for Average U(I,j) Tensor Note
PLAT340_ALERT_3_B	Low Bond Precision on C-C Bonds 0.03562 Ang.

Group 2 alerts:

PLAT306_ALERT_2_B	Isolated Oxygen Atom	Check
Unrecognized electron density	was introduced to refiner	nent as dummy oxygen atoms.

PLAT412_ALERT_2_A Short Intra XH3 .. XHn Check These alerts concern H atoms placed geometrically.

PLAT430_ALERT_2_A Short Inter D...A Contact Check

These alerts concern contacts with solvent molecules whose positions were poorly determined.

CheckCIF validation of 6:Group 1 alerts:THETM01_ALERT_3_AThe value of sine(theta_max)/wavelength is less than 0.550PLAT029_ALERT_3_A_diffrn_measured_fraction_theta_full value Low. Why?PLAT082_ALERT_2_BHigh R1 Value 0.17 ReportPLAT084_ALERT_3_AHigh wR2 Value (i.e. > 0.25) 0.46 ReportPLAT250_ALERT_2_BLarge U3/U1 Ratio for Average U(I,j) Tensor.. NotePLAT340_ALERT_3_BLow Bond Precision on C-C Bonds.. 0.01523 Ang.

Group 2 alerts:

PLAT316_ALERT_2_A Too many H on C in C=N Moiety in Main Residue Check

Concerned C in C–N moiety in main residue and H atoms checked.

PLAT306_ALERT_2_B Isolated Oxygen Atom Check

Unrecognized electron density was introduced to the refinement as dummy oxygen atoms

PLAT430_ALERT_2_B Short Inter D...A Contact Check

These alerts concern contacts with solvent molecules which positions were poorly determined

Foldamers	1	6
Chemical formula	$C_{102}H_{71.75}Ca_1N_{15}O_{37.25}$	$C_{98} H_{75} Ca_{2.25} N_{18} O_{49.25}$
Formula weight	2143.57	2382.94
Temperature	100 K	100.15
Wavelength	0.9762 Å	0.8000 Å
Crystal system	Triclinic	Orthorhombic
Space group	P1	Pbcn
Unit cell dimensions	a = 21.833 (4) Å	a = 48.968 (8) Å
	b = 26.901 (4) Å	b = 43.383 (2) Å
	c = 27.093 (3) Å	c = 27.123 (19) Å
	$\alpha = 93.876 (1)^{\circ}$	$\alpha = 90^{\circ}$
	$\beta = 108.543 \ (1)^{\circ}$	$\beta = 90^{\circ}$
	$\gamma = 111.116 (13)^{\circ}$	$\gamma = 90^{\circ}$
Volume	13772 (4) Å ³	57620.1 (10) Å ³
Ζ	4	16
Density (calculated)	1.034 g/cm^3	1.099 g/cm^3
Absorption coefficient	0.215 μ/mm ⁻¹	0.230 μ/mm ⁻¹
Color and shape	Pale yellow, needles	Colorless, plates
Crystal size	0.15 x 0.02 x 0.02 mm	0.15 x 0.05 x 0.01 mm
Index ranges	$-18 \le h \le 18$	$-19 \le h \le 44$
	$-22 \le k \le 22$	$-40 \le k \le 42$
	$-22 \le 1 \le 22$	-23 ≤1 ≤26
Reflections collected	57803	96340
R _{int}	0.1337	0.0838
Data/restraints/parameters	29422/675/1376	22635/467/2493
Goodness-of-fit on F ²	1.006	1.786
Final R indexes $[I > 2\sigma(I)]$	$R_1 = 0.1210$	$R_1 = 0.1681$
	$wR_2 = 0.2838$	$wR_2 = 0.4348$
Final R indexes [all data]	$R_1 = 0.2104$	$R_1 = 0.1947$
	$wR_2 = 0.3613$	$wR_2 = 0.4615$
Largest diff. peak and hole	0.69/-0.56 e Å ⁻³	1.07/-0.70 e Å ⁻³
Total potential solvent accessible	3592.0 Å ³	16882.8 Å ³
void volume from SQUEEZE		
Electron count/cell	1126	4517
CCDC #	2125508	2125515

 Table S1: Crystallographic data and refinement details for 1 and 6.

Figure S10: Crystals of (a) 1 and (b) 6 observed under cross polarizing microscope.

4 Spectra and Chromatograms

Figure S11: Analytical data of compound **1**. HPLC chromatograms after cleavage from the resin (a) and after purification (b) (C18, 0–30B, 50 °C; A: 13mM NH₄OAc buffer pH 8.5, B: acetonitrile). c) ¹H NMR and part of the COSY NMR spectrum (500 MHz, 0.6 mM in 12 mM NH₄OAc buffer pH 8.5 H₂O/D₂O 9:1, H₂O suppression), some cross-signals of diastereotopic methylene groups are exemplary highlighted in blue.

Figure S12: Analytical data of compound **2**. HPLC chromatograms after cleavage from the resin (a) and after purification (b) (C18, 0–15B, 50 °C; A: 13mM NH₄OAc buffer pH 8.5, B: acetonitrile). c) ¹H NMR and part of the COSY NMR spectrum (500 MHz, 0.26 mM in 12 mM NH₄OAc buffer pH 8.5 H₂O/D₂O 9:1, H₂O suppression), some cross-signals of diastereotopic methylene groups are exemplary highlighted in blue.

Figure S13: Analytical data of compound **3**. HPLC chromatograms after cleavage from the resin (a) and after purification (b) (C18, 0–30B, 50 °C; A: 13mM NH₄OAc buffer pH 8.5, B: acetonitrile). c) ¹H NMR and part of the COSY NMR spectrum (500 MHz, 0.16 mM in 12 mM NH₄OAc buffer pH 8.5 H₂O/D₂O 9:1, H₂O suppression), some cross-signals of diastereotopic methylene groups are exemplary highlighted in blue.

Figure S14: Analytical data of compound **4**. HPLC chromatograms after cleavage from the resin (a) (C18, 0–100B, 50 °C; A: 13mM NH₄OAc buffer pH 8.5, B: acetonitrile) and after purification (b) (C18, 0–50B, 50 °C; A: 13mM NH₄OAc buffer pH 8.5, B: acetonitrile). c) ¹H NMR and part of the COSY NMR spectrum (500 MHz, 0.18 mM in 12 mM NH₄OAc buffer pH 8.5 H₂O/D₂O 9:1, H₂O suppression), some cross-signals of diastereotopic methylene groups are exemplary highlighted in blue.

Figure S15: Analytical data of compound **5**. HPLC chromatograms after cleavage from the resin (a) (C18, 0–15B, 50 °C; A: 13mM NH₄OAc buffer pH 8.5, B: acetonitrile) and after purification (b) (C18, 0–5B, 50 °C; A: 13mM NH₄OAc buffer pH 8.5, B: acetonitrile). c) ¹H NMR spectrum (500 MHz, 0.6 mM in 12 mM NH₄OAc buffer pH 8.5 H₂O/D₂O 9:1, H₂O suppression.

Figure S16: Analytical data of compound **6**. HPLC chromatograms after cleavage from the resin (a) (C18, 0–30B, 50 °C; A: 13mM NH₄OAc buffer pH 8.5, B: acetonitrile) and after purification (b) (C18, 0–10B, 50 °C; A: 13mM NH₄OAc buffer pH 8.5, B: acetonitrile). c) ¹H NMR spectrum (500 MHz, 0.66 mM in 12 mM NH₄OAc buffer pH 8.5 H₂O/D₂O 9:1, H₂O suppression).

Figure S17: Analytical data of compound 7. HPLC chromatograms after cleavage from the resin (a) and after purification (b) (C18, 0–30B, 50 °C; A: 13mM NH₄OAc buffer pH 8.5, B: acetonitrile). c) ¹H NMR and part of the COSY NMR spectrum (500 MHz, 0.36 mM in 12 mM NH₄OAc buffer pH 8.5 H₂O/D₂O 9:1, H₂O suppression), some cross-signals of diastereotopic methylene groups are exemplary highlighted in blue.

Figure S18: NMR spectra of compound 8. a) ¹H NMR (500 MHz, CDCl₃). b) ¹³C NHR (126 MHz, CDCl₃).

Figure S19: NMR spectra of compound 9. a) ¹H NMR (500 MHz, CDCl₃). b) ¹³C NHR (126 MHz, CDCl₃).

Figure S20: NMR spectra of compound **10**. a) ¹H NMR (400 MHz, DMSO-d₆). b) ¹³C NHR (101 MHz, DMSO-d₆). d₆).

Figure S21: NMR spectra of compound **11**. a) ¹H NMR (400 MHz, DMSO-d₆). b) ¹³C NHR (101 MHz, DMSO-d₆). d₆).

Figure S22: NMR spectra of compound 12. a) 1H NMR (500 MHz, DMSO-d6). b) 13C NHR (126 MHz, DMSO-d6).

5 Literature

- J. Buratto, C. Colombo, M. Stupfel, S. J. Dawson, C. Dolain, B. Langlois d'Estaintot, L. Fischer, T. Granier, M. Laguerre, B. Gallois, I. Huc, *Angew. Chem. Int. Ed.* 2014, *53*, 883-887.
- [2] D. Bindl, E. Heinemann, P. K. Mandal, I. Huc, *Chem. Commun.* **2021**, *57*, 5662–5665.
- [3] M. Vallade, P. Sai Reddy, L. Fischer, I. Huc, *Eur. J. Org. Chem.* 2018, 2018, 5489-5498.
- [4] a) H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512-7515; b) L. Pohl, M. Eckle, Angew. Chem. Int. Ed. 1969, 8, 381-381.
- [5] a) B. t. Baptiste, C. l. Douat-Casassus, K. Laxmi-Reddy, F. d. r. Godde, I. Huc, *J. Org. Chem.* **2010**, *75*, 7175-7185; b) X. Hu, S. J. Dawson, Y. Nagaoka, A. Tanatani, I. Huc, *J. Org. Chem.* **2016**, *81*, 1137-1150.
- [6] S. Manabe, Y. Ito, J. Am. Chem. Soc. 2002, 124, 12638-12639.
- [7] J. Jancarik, S.-H. Kim, J. Appl. Cryst. 1991, 24, 409-411.
- [8] N. E. Chayen, *Structure* **1997**, *5*, 1269-1274.
- M. Cianci, G. Bourenkov, G. Pompidor, I. Karpics, J. Kallio, I. Bento, M. Roessle, F. Cipriani,
 S. Fiedler, T. R. Schneider, *J. Synchrotron Radiat.* 2017, 24, 323-332.
- [10] G. Winter, J. Appl. Cryst. **2010**, 43, 186-190.
- [11] G. Winter, D. G. Waterman, J. M. Parkhurst, A. S. Brewster, R. J. Gildea, M. Gerstel, L. Fuentes-Montero, M. Vollmar, T. Michels-Clark, I. D. Young, N. K. Sauter, G. Evans, *Acta Crystallogr. D* 2018, 74, 85-97.
- [12] a) P. Evans, Acta Crystallogr. D 2006, 62, 72-82; b) P. R. Evans, G. N. Murshudov, Acta Crystallogr. D 2013, 69, 1204-1214.
- [13] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112-122.
- [14] G. M. Sheldrick, Acta Crystallogr. C 2015, 71, 3-8.
- [15] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.* **2009**, 42, 339-341.
- [16] P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Acta Crystallogr. D 2010, 66, 486-501.
- [17] A. L. Spek, Acta Crystallogr. D 2009, 65, 148-155.