

# Supporting Information

## Allosteric Recognition of Homomeric and Heteromeric Pairs of Monosaccharides by a Foldamer Capsule

Pedro Mateus, Nagula Chandramouli, Cameron D. Mackereth, Brice Kauffmann, Yann Ferrand,\* and Ivan Huc\*

ange\_201914929\_sm\_miscellaneous\_information.pdf

## This PDF file includes:

| 1. Methods for NMR, Circular Dichroism and X-ray crystallography                                   | S2         |
|----------------------------------------------------------------------------------------------------|------------|
| 2. Materials and Methods for chemical synthesis                                                    | S5         |
| 2.1 Synthesis of oligomer 2                                                                        | S5         |
| 2.2 Experimental procedures                                                                        | <b>S</b> 6 |
| 3. Solution studies                                                                                | <b>S</b> 8 |
| 3.1 Circular dichroism titrations (Figures S1 to S3)                                               | <b>S</b> 8 |
| 3.2 NMR studies (Figures S4 to S11)                                                                | S9         |
| 4. NMR Structure assignment                                                                        | S14        |
| 4.1 (2) <sub>2</sub> $\supset$ (D-3) <sub>2</sub> (Scheme S2; Figures S12 to S17; Tables S1 to S5) | S14        |
| 4.2 (2) <sub>2</sub> $\supset$ (D-3;D-4) (Scheme S3; Figures S18 to S21; Tables S6 to S8)          | S25        |
| 5. X-Ray Crystallography                                                                           | S33        |
| 5.1 X-Ray data for capsule 2. (Tables S9; Figure S22)                                              | S33        |
| 5.2 X-Ray data for capsule (2) <sub>2</sub> . (Tables S10; Figure S19)                             | S35        |
| 5.3 X-Ray data for host-guest complex $(2)_2 \supset (D-3)_2$ . (Tables S11; Figure S20-S21)       | S37        |
| 6. <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of new synthetic compounds                   | S38        |
| 7. References                                                                                      | S43        |
|                                                                                                    |            |

Other Supplementary Materials for this manuscript includes the following:

Crystallographic Information files for X-ray structures

#### 1. Methods for NMR, Circular Dichroism and X-ray crystallography

*Nuclear Magnetic Resonance.* NMR spectra were recorded on 4 different NMR spectrometers: (1) an Avance II NMR spectrometer (Bruker Biospin) with a vertical 7.05T narrow-bore/ultrashield magnet operating at 300 MHz for <sup>1</sup>H observation and 75 MHz for <sup>13</sup>C observation by means of a 5-mm direct BBO H/X probe with Z gradient capabilities; (2) an Avance 400 NMR spectrometer (Bruker Biospin) with a vertical 9.4T narrow-bore/ultrashield magnet operating at 400 MHz for <sup>1</sup>H observation by means of a 5-mm direct QNP <sup>1</sup>H/<sup>13</sup>C/<sup>31</sup>P/<sup>19</sup>F probe with gradient capabilities; (3) an Avance III NMR spectrometer (Bruker Biospin) with a vertical 16.45T narrow-bore/ultrashield magnet operating at 700 MHz for <sup>1</sup>H observation by means of a 5-mm TXI <sup>1</sup>H/<sup>13</sup>C/<sup>15</sup>N probe with Z gradient capabilities. (4) an Avance III NMR spectrometer (Bruker Biospin) with a Standard Bore Cryo Probe operating at 800 MHz for <sup>1</sup>H observation by means of a 5-mm TXI <sup>1</sup>H/<sup>13</sup>C/<sup>15</sup>N probe with Z gradient capabilities. (4) an Avance III NMR spectrometer (Bruker Biospin) with a Standard Bore Cryo Probe operating at 800 MHz for <sup>1</sup>H observation by means of a 5-mm TXI <sup>1</sup>H/<sup>13</sup>C/<sup>15</sup>N probe with Z gradient capabilities. (4) an Avance III NMR spectrometer (Bruker Biospin) with a Standard Bore Cryo Probe operating at 800 MHz for <sup>1</sup>H observation by means of a 5-mm TCI <sup>1</sup>H/<sup>13</sup>C/<sup>15</sup>N probe with Z gradient capabilities. Chemical shifts are reported in parts per million (ppm,  $\delta$ ) with tetramethylsilane as an internal standard. <sup>1</sup>H NMR splitting patterns with observed first-order coupling are designated as singlet (s), doublet (d), triplet (t), or quartet (q). Coupling constants (*J*) are reported in hertz. Data processing was performed with Topspin 3.5 software. Samples were not degassed. CDCl<sub>3</sub> from Sigma Aldrich was used after filtration through an alumina pad.

*NMR titrations*. Titrations were performed in an NMR tube at  $298.2 \pm 0.1$  K by adding aliquots of the stock solution of the guest by means of a Hamilton syringe to 0.500 mL solution of  $(2)_2$ . After homogenization and equilibration, NMR spectra were recorded.

Solution state structure calculation. For structure determination of  $(2)_2 \supset (D-3)_2$  NMR spectra were initially collected at 298 K on a sample containing 2 mM (2)<sub>2</sub> and 4 mM <sup>13</sup>C-labelled D-3 in CD<sub>3</sub>Cl with 5 % (vol/vol) DMSO-d<sub>6</sub>. Chemical shift assignment for all observable <sup>1</sup>H nuclei, as well as their colvalently attached <sup>13</sup>C and <sup>15</sup>N nuclei, were assigned based on 2D <sup>1</sup>H,<sup>13</sup>C-HSQC, 2D <sup>1</sup>H,<sup>15</sup>N-HSQC, 2D <sup>13</sup>C-HMBC, 2D <sup>1</sup>H-DQFCOSY, 2D x2-filtered <sup>1</sup>H-NOESY (150 ms mixing time), 3D <sup>13</sup>C-HSQC-NOESY (150 ms mixing time), 3D (H)CCH-TOCSY, and 3D H(C)CH-TOCSY spectra. These assignments are presented in Tables S1-S3. From the 2D NOESY, it was clear that significant chemical exchange was occurring, due to large crosspeaks observed for equivalent but spatially distant atoms in the two strands of the capsule double-helix. In order to calculate a high resolution structure it was necessary to repeat the NMR measurements at 278 K, which resulted in only minimal perturbation of the <sup>1</sup>H, <sup>13</sup>C and <sup>15</sup>N chemical shifts. Under these conditions, chemical exchange was almost completely suppressed on the timescale of the spectra acquition. Distance restraints were based on NOESY crosspeak intensities from two spectra. The 2D x2-filtered <sup>1</sup>H-NOESY (150 ms mixing time) was used to identify intramolecular  $(2)_2$  nOe, and also intramolecular nOe between  $(2)_2$  and D-3. This was due to selective filtering of protons bound to <sup>13</sup>C nuclei in the x2 dimension. The 3D <sup>13</sup>C-HSQC-NOESY (150 ms mixing time) was used to obtain intramolecular nOe within 13C-labelled D-3, as well as intermolecular nOe to  $(2)_2$ . The intensities from each spectra were calibrated based on the fixed distance of geminal aliphatic protons. The conformation of the bound D-3 was validated by the pattern and intensity of crosspeaks in the 3D <sup>13</sup>C-HSOC-NOESY (150 ms mixing time), as well as crosspeak intensities in 2D <sup>1</sup>H-DQFCOSY and 2D <sup>1</sup>H-TOCSY acquired on a sample containing 1 mM (2)<sub>2</sub> and 2 mM natural abundance D-3. Calculation of 20 structures was performed with an MMFFs force field implemented within MacroModel (Maestro v6.5.007) and resulted in an ensemble of well-defined structures. Statistics of the final ensemble of 20 structures are included in Table S4.

For structure determination of  $(2)_2 \supset (D-3;D-4)$ , significant perturbation and double the amount of new <sup>1</sup>H chemical shifts as compared to  $(2)_2 \supset (D-3)_2$  necessitated a renewed chemical shift assignment process, once again at 298 K. Due to the increased complexity, four separate sample were prepared with different combinations of natural abundance and <sup>13</sup>C-labelled sugars, all in CDCl<sub>3</sub> with 5 % (v/v) DMSO-d<sub>6</sub>: (sample a) 1 mM (2)<sub>2</sub>, 1 mM <sup>13</sup>C-labelled D-3, 1 mM natural abundance D-4; (sample b) 1 mM (2)<sub>2</sub>, 1 mM natural abundance D-3, 1 mM <sup>13</sup>C-labelled D-4, (sample c) 3 mM (2)<sub>2</sub>, 3 mM <sup>13</sup>C-labelled D-3, 3 mM <sup>13</sup>C-labelled D-4; (sample d) 1 mM (2)<sub>2</sub>, 1 mM natural abundance D-3, 1 mM natural abundance D-4. Assignment of the sugar resonances for the encapsulated D-3, D-4 used a combination of <sup>13</sup>C-HSQC-NOESY (150 ms mixing time, on samples a,b,c), along with H(C)CH-TOCSY and (H)CCH-TOCSY (sample c). The assignment of the <sup>1</sup>H resconances of (2)<sub>2</sub> were obtained by first identifying chemical exchange pairs for the interior of the capsule, and next comparing each pair to the <sup>1</sup>H and <sup>15</sup>N resonances of the coexisting  $(2)_2 \supset (D-3)_2$  by using <sup>1</sup>H, <sup>15</sup>N-HSQC spectra. Validation and completion of the <sup>1</sup>H chemical shift assignment used intermolecular nOe crosspeaks of the resonances specific to  $(2)_2 \supset (D-3, D-4)$  by using 2D <sup>1</sup>H-NOESY (150 ms mixing time; *sample d*) and 2D x2-filtered <sup>1</sup>H-NOESY (150 ms mixing time; samples b,c). The resulting <sup>1</sup>H chemical shift assignments of (2)<sub>2</sub>  $\supset$  (D-3, D-4) are found in Table S5. Distance restraints were based on NOESY crosspeak intensities from three spectra. A 2D x2-filtered <sup>1</sup>H-NOESY (150 ms mixing time) was used to identify intramolecular (2)<sub>2</sub> nOe, and also intramolecular nOe between (2)<sub>2</sub> and D-3 or D-4. 3D <sup>13</sup>C-HSQC-NOESY (150 ms mixing time) spectra were recorded two samples (sample a, b) to obtain intramolecular nOe within each <sup>13</sup>C-labelled sugar, as well as intermolecular nOe from each sugar to (2)<sub>2</sub>, and also between D-3 and D-4. The intensities from each spectra were calibrated based on the fixed distance of geminal aliphatic protons. Discrimination between nOe crosspeaks and exchange-derived crosspeaks was achieved by comparison to spectra recorded at 278 K, and by one round of iterative structure calculation. The conformation of the bound D-3 and D-4 was validated by the pattern and intensity of crosspeaks in the 3D <sup>13</sup>C-HSQC-NOESY (mixing time 150 ms; samples b,c), as well as crosspeak intensities in 2D <sup>1</sup>H-DQFCOSY and 2D <sup>1</sup>H-TOCSY (sample d). Calculation of 15 structures was performed with an MMFFs force field implemented within MacroModel (Maestro v6.5.007) and resulted in an ensemble of well-defined structures. Statistics of the final ensemble of 15 structures are included in Table S6.

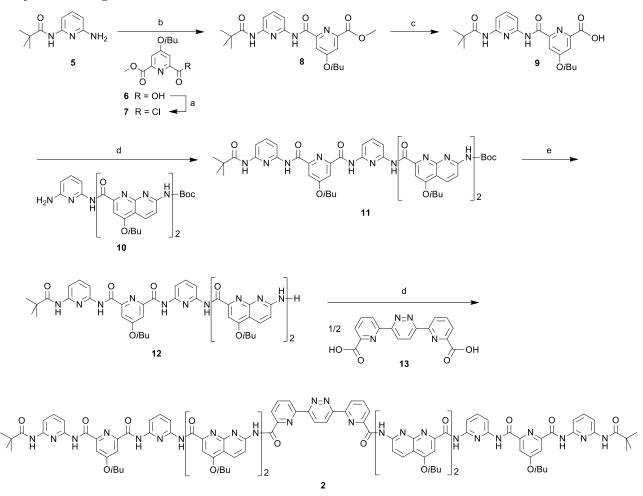
*Chemical exchange measurement*. A series of <sup>1</sup>H,<sup>1</sup>H-NOESY were collected for natural abundance  $(2)_2 \supset (D-3)_2$  at 298 K and 278 K at a field strength of 700 MHz. At 298 K, the mixing times were 1, 5, 10, 25, 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, and 2000 ms. Due to slower exchange at 278 K, only mixing times of 10,125, 250, 500, 750, 100, 1500 and 200 ms were used. The ratio of crosspeak intensity to diagonal peak intensity for two exchanging pairs were measured as a function of mixing time to produce an average of the values. The curves were fit with the equation  $(1-\exp(-r^*x))/(1+\exp(-r^*x))$  by using Qti plot (version 0.9.8). The fitted value of the exchange rate (*r*) represents the combined forward and reverse rate of exchange between the two conformations.

*Circular Dichroism titrations*. Titrations were performed in a 2 mm pathlength quartz cuvette at  $298.2 \pm 0.1$  K by adding aliquots of the stock solution of the guests by means of a Hamilton syringe to 0.5 mL solution of (2)<sub>2</sub>. After homogenization and equilibration CD spectra were recorded in the 340–390 nm region on a Jasco J-815 circular dichroism spectropolarimeter. Changes in ellipticity were analyzed using the HypSpec program.<sup>1</sup> The errors quoted are the standard deviations of the overall constants given directly by the program for the input data, which include all the wavelengths of each experimental point.

*Crystallography.* Data for compounds  $(2)_2$  and and  $(2)_2 \supset (D-3)_2$  were collected at the IECB X-ray facility (CNRS UMS 3033 – INSERM US001, University of Bordeaux). Single crystal X-ray diffraction experiments on  $(2)_2$  were performed

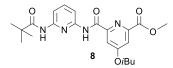
on a High flux Bruker X8 Proteum rotating anode equipped with Helios optics and a Platinum CCD detector at the copper  $k\alpha$  wavelength. The crystal was mounted on a cryo-loop after quick soaking on Paratone-N oil from Hampton research and flash-frozen. The diffractometer was composed of a kappa geometry goniometer allowing omega-scan data collections. The data were processed with the X8 proteum2suite.

Diffraction data for compound  $(2)_2 \supset (D-3)_2$  were measured on a 3kW microfocus Rigaku FRX rotating anode. The source is equipped with high flux Osmic Varimax HF mirrors and a hybrid Dectris Pilatus 200K detector. The source is operating at the copper k $\alpha$  wavelength with a partial chi goniometer that decreases blind areas and enables automatic axial adjustment. Data were processed with the CrysAlisPro suite version 1.171.38.43.<sup>2</sup> Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm was used.

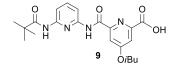

Both structures were solved with Shelxt and refined by full-matrix least-squares method on F2 with Shelxl-2014<sup>3</sup> within Olex2.<sup>4</sup> For all atoms, anisotropic atomic parameters were used. Hydrogen atoms were place at idealized position sand refined as riding of their carriers with Uiso(H)=1.2Ueq(CH, CH2, NH) and Uiso(H)=1.5Ueq(CH3). DFIX and AFIX instructions were used to improve the geometry of molecules and RIGU to model atomic displacement parameters. Severely disordered solvent molecules were removed using the SQUEEZE procedure from the PLATON suite.<sup>5</sup> For search and analysis of solvent accessible voids in the structures default parameters were utilized: grid 0.20 Å, probe radius 1.2 Å and NStep 6. Calculated total potential solvent accessible void volumes and electron counts per unit cell are given in the CIF files that were checked using IUCR's checkcif algorithm. Due to the characteristics of the crystals, i.e. large volume fractions of disordered solvent molecules, weak diffraction intensity, incompleteness of the data and moderate resolution, a number of A -level and B -level alerts remain in the check cif file. These alerts are inherent to the data and refinement procedures and do not reflect errors. In both structures A -level alerts related to the models accuracy concern the disordered "side chains" parts of the foldamers rather than the main chains.

*Modelling.* Calculation of cavity volumes. Cavity volumes of  $(2)_2$  and of the  $(2)_2 \supset (D-3)_2$  complex were estimated using the SURFNET software.<sup>6</sup> PDB-format files were generated from the x-ray data after removing encapsulated solvent and guest molecules and were used directly to calculate volumes. The volume of the cavities was generated by fitting spheres into the spaces generated between atoms (coordinate of the PDB files). Typically, the diameter of the probe used in this study was 1 Å. Packing coefficient is defined as the ratio between the volume of the guest and the volume of the cavity.

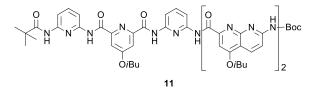
#### 2. Materials and Methods for chemical synthesis


All reactions were carried out under a dry nitrogen atmosphere. Commercial reagents were purchased from Sigma-Aldrich, Alfa-Aesar or TCI and were used without further purification unless otherwise specified. Chloroform (CHCl<sub>3</sub>) and diisopropylethylamine (DIEA) were distilled over calcium hydride (CaH<sub>2</sub>) prior to use. Reactions were monitored by thin layer chromatography (TLC) on Merck silica gel 60-F254 plates and observed under UV light. GPC purification was performed on an LC-9130G NEXT setup (Japan Analytical Industry Co., Ltd.) equipped with two preparative columns (Inner diameter of 20mm and length of 600mm): a JAIGEL 2.5H and a JAIGEL 3H, in conjugation with UV-600 NEXT UV detector and an FC-3310 fraction collector. Chloroform with 1% EtOH and 0.5% Et<sub>3</sub>N was used as mobile phase, with a flow rate of 7.0 mL/min. ESI mass spectra were obtained from the Mass Spectrometry Laboratory at the European Institute of Chemistry and Biology (UMS 3033 - IECB), Pessac, France.

#### 2.1 Synthesis of oligomer 2

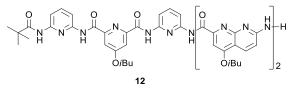



**Scheme S1**. Synthesis of oligomer **1**: (a) oxalyl chloride, dry CHCl<sub>3</sub>, rt; (b) dry CHCl<sub>3</sub>, DIPEA, rt; (c) NaOH 6M, 1,4dioxane, 0°C to rt; (d) dry CHCl<sub>3</sub>, PyBOP, DIPEA, 40 °C; (e) TFA, CHCl<sub>3</sub>, 0°C to rt, 2h.

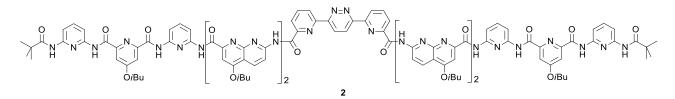

#### 2.2 Experimental procedures



**piv-P<sub>2</sub>-ester (8)**. Monoester **6**<sup>7</sup> (0.449 g, 1.77 mmol) was dissolved in anhydrous CHCl<sub>3</sub> (2 mL). Oxalyl chloride (0.3 mL, 3.55 mmol) was added and the reaction was stirred at room temperature for 2.5 h. The solvents were removed under vacuum and the residue was dried under vacuum 6 h to yield acid chloride **7** as a yellow solid. The freshly prepared acid chloride **7** was dissolved in dry CHCl<sub>3</sub> (1 mL) and added dropwise at rt to a solution of **5**<sup>8</sup> (0.342 g, 1.77 mmol) and distilled DIPEA (1.8 mL, 10.33 mmol) in dry CHCl<sub>3</sub> (3mL). The reaction was allowed to proceed at rt for 12 h. The mixture was washed with sat. NH<sub>4</sub>Cl, followed by sat. NaHCO<sub>3</sub> and finally water. The organic portions were dried with anydrous MgSO<sub>4</sub>, filtered and evaporated to dryness. The residue was purified by precipitation from minimum amount of MeOH which gave **8** as a white solid (87%, 659 mg). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  ppm = 10.29 (s, 1H); 8.08 (d, *J* = 8.00, 1H), 8.01 (d, *J* = 8.00, 1H), 7.94 (m, 1H), 7.91 (s, 1H), 7.79 – 7.74 (m, 2H), 4.04 (s, 3H), 3.93 (d, *J* = 6.40, 1H), 2.17, (m, 1H), 1.35 (s, 9H), 1.06 (d, *J* = 6.80, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  ppm = 177.0, 167.8, 164.9, 161.7, 151.4, 150.1, 149.0, 148.2, 140.7, 115.1, 111.0, 109.7, 109.5, 75.3, 53.0, 39.8, 28.0, 27.5, 19.1. HRMS (ESI<sup>+</sup>): *m/z* calcd for C<sub>22</sub>H<sub>29</sub>N<sub>4</sub>O<sub>5</sub> [M+H]<sup>+</sup> 429.2138; found 429.2131.




**piv-P<sub>2</sub>-acid** (**9**). A solution of NaOH 6M (0.75 mL) was added to the ester **8** (657 mg, 1.53 mmol,) dissolved in 1,4dioxane (7 mL) at 0°C and the reaction mixture was stirred at rt overnight. The mixture was added to 5% aqueous citric acid solution (25 mL) and extracted with DCM. The organic portions were dried with anydrous MgSO<sub>4</sub>, filtered and evaporated to dryness to give **9** as a white solid (93%, 591 mg). <sup>1</sup>H NMR (300 MHz, DMSO-d<sub>6</sub>)  $\delta$  ppm = 10.61 (s, 1H); 9.84 (s, 1H); 8.00 – 7.96 (m, 1H); 7.88 – 7.85 (m, 3H); 7.76 (d, *J* = 2.50, 1H); 4.05 (d, *J* = 6.50, 2H); 2.15 – 2.02 (m, 1H); 1.24 (s, 9H), 1.01 (d, *J* = 6.70, 6H. <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  ppm = 177.2, 167.5, 165.1, 161.3, 151.2, 150.5, 149.0, 148.9, 114.0, 111.3, 110.4, 108.8, 74.7, 27.5, 26.9, 18.8. HRMS (ESI<sup>+</sup>): *m/z* calcd for C<sub>21</sub>H<sub>27</sub>N<sub>5</sub>O<sub>5</sub> [M+H]<sup>+</sup> 415.1981; found 415.1978.



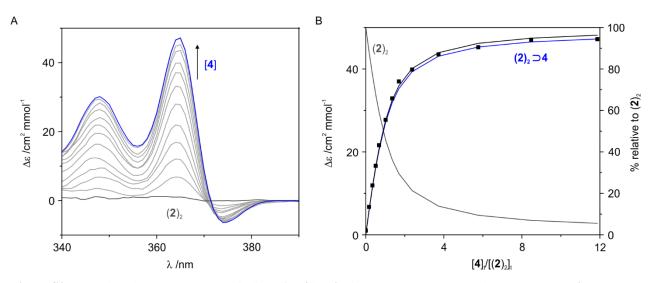

**piv-P<sub>3</sub>N<sub>2</sub>-Boc (11).** Acid **9** (322 mg, 0.73 mmol), amine **10**<sup>9</sup> (540 mg, 0.78 mmol) and PyBOP (2.058 mg, 4 mmol) were dissolved in dry CHCl<sub>3</sub> (10 mL). Then, DIPEA (0.683 mL, 0.119 mmol) and were added at room temperature and the reaction mixture was heated to 40 °C. After three days, the mixture was washed with sat. NH<sub>4</sub>Cl, followed by sat. NaHCO<sub>3</sub> and finally water. The organic portions were dryed with anydrous MgSO<sub>4</sub>, filtered and evaporated to dryness. The residue was purified by GPC to yield **11** as a white solid (58 %, 495 mg). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  ppm = 11.01 (s, 1H); 10.58 (s, 1H); 9.99, (s, 2H); 8.71 (d, *J* = 8.95, 1H); 8.65 (d, *J* = 9.10, 1H); 8.51 (d, *J* = 9.20, 1H); 8.33 (d, *J* = 9.00, 1H);

8.21 (d, J = 8.00, 1H); 8.08 (t, J = 7.50, 2H); 7.97-7.95 (m, 3H), 7.84 (t, J = 7.90, 1H); 7.75-7.73 (m, 2H); 7.67 (s, 1H); 7.58 (t, J = 8.20, 1H); 4.14-4.10 (m, 4H); 3.96 (d, J = 6.50, 2H); 2.38-2.27 (m, 2H); 2.25-2.15 (m, 1H); 1.61 (s, 9H); 1.18 (d, J = 6.70, 6H); 1.16 (d, J = 6.70, 6H); 1.10 (d, J = 6.70, 6H); 0.94 (s, 9H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  ppm = 177.1, 168.2, 164.1, 163.9, 163.5, 162.4, 162.0, 161.5, 155.2, 154.7, 154.6, 154.2, 153.5, 152.4, 152.2, 150.8, 150.7, 150.1, 149.6, 149.4, 149.0, 140.5, 140.2, 134.3, 133.8, 115.1, 114.8, 114.2, 114.0, 112.3, 111.9, 110.8, 110.4, 110.3, 110.1, 98.9, 98.5, 82.0, 75.9, 75.8, 75.5, 39.5, 28.3, 28.2, 19.4, 19.2. HRMS (ESI<sup>+</sup>): m/z calcd for C<sub>57</sub>H<sub>66</sub>N<sub>13</sub>O<sub>10</sub> [M+H]<sup>+</sup> 1092.5056; found 1092.4697.

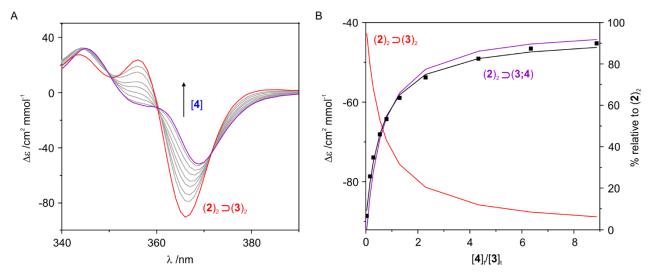


**piv-P<sub>3</sub>N<sub>2</sub>-NH<sub>2</sub> (12)**. Trifluoroacetic acid (0.5 mL) was added dropwise to a solution of **11** (180 mg, 0.165 mmol) in 1.5 mL of CHCl<sub>3</sub> under nitrogen at 0 °C. Then, the resultant mixture was stirred at room temperature for 2 h. The volatiles were removed under reduced pressure to give a solid which was dissolved in DCM and washed two times with a saturated solution of NaHCO<sub>3</sub>, distilled water and then with brine. The organic portions were dried with anydrous MgSO<sub>4</sub>, filtered and evaporated to dryness to give **12** as a white solid (92%, 150 mg). <sup>1</sup>H NMR (300 MHz, DMSO-d<sub>6</sub>)  $\delta$  ppm = 11.75 (s, 1H); 11.45 (s, 1H); 11.08 (s, 1H), 10.82 (s, 1H), 9.38 (s, 1H), 8.76 (d, *J* = 8.80, 1H); 8.53 (d, *J* = 8.80, 1H); 8.16 (d, *J* = 8.80, 1H); 8.14-8.01 (m, 3H); 7.89-7.84 (m, 3H); 7.72 (s, 1H); 7.66 (t, *J* = 8.00, 1H); 7.50 (d, *J* = 8.00, 1H); 7.42 (s, 1H); 6.86 (d, *J* = 8.80, 1H); 6.78 (bs, 2H), 4.24 (d, *J* = 6.20, 2H); 4.09 (m, 4H); 2.29-2.05 (m, 3H); 1.11 (d, *J* = 6.70, 6H); 1.09 (d, *J* = 6.70, 6H); 1.05 (d, *J* = 6.70, 6H); 0.77 (s, 9H). Limited solubility of the product prevented characterization by <sup>13</sup>C NMR. HRMS (ESI<sup>+</sup>): *m/z* calcd for C<sub>52</sub>H<sub>58</sub>N<sub>13</sub>O<sub>8</sub> [M+H]<sup>+</sup> 992.4531; found 992.4501.



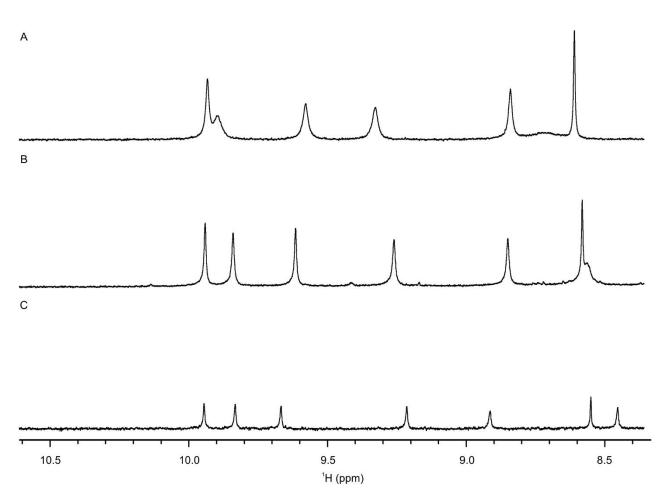

**piv-P<sub>3</sub>N<sub>2</sub>pyrpyzpyrN<sub>2</sub>P<sub>3</sub>-piv (2)**. A solution of pentamer amine **12** (0.186 mmol, 185 mg), diacid **13**<sup>9</sup> (0.093 mmol, 30 mg) and PyBOP (0.93 mmol, 484 mg) were dissolved in dry CHCl<sub>3</sub> (2 mL). Then, DIPEA (0.93 mmol, 0.162 mL) was added at rt and the reaction mixture was heated to 40°C for 2 days. The solvents were removed under reduced pressure and the residue was purified by GPC which gave **2** as a white solid (84%, 177 mg). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  ppm = 9.90 (s, 2H); 9.87 (s, 2H); 9.55, (s, 2H), 9.30, (s, 2H), 8.81, (s, 2H), 8.68 (s, 2H), 8.58, (s, 2H), 8.24 (d, *J* = 8.80, 2H); 8.10 (d, *J* = 8.80, 2H); 8.00 (m, 2H); 7.78 (m, 2H); 7.57 (m, 2H); 7.44-7.30 (m, 6H), 7.17 (t, *J* = 8.00, 3H); 7.11 (s, 3H); 7.02 (t, *J* = 7.80, 2H); 6.91-6.88 (m, 4H); 6.82 (d, *J* = 7.80, 2H); 6.53 (s, 2H); 6.44 (t, *J* = 8.00, 2H); 4.03-3.89 (m, 6H); 3.83-3.66 (m, 6H); 2.45-2.33 (m, 2H); 2.32-2.21 (m, 2H); 2.16-2.05 (m, 2H); 1.31 (d, *J* = 6.70, 6H); 1.30 (d, *J* = 6.70, 6H); 1.20 (d, *J* = 7.80, 6H); 1.11 (d, *J* = 6.70, 6H); 1.10 (d, *J* = 6.70, 6H); 0.36 (s, 18H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  ppm = 177.5, 167.3, 163.0, 162.9, 161.7, 160.7, 160.6, 160.4, 156.0, 153.2, 153.1, 152.6, 152.5, 152.1, 151.8, 151.1, 150.5, 149.7, 149.2, 148.7, 148.5, 148.2, 146.9, 139.5, 138.9, 137.4, 134.5, 132.3, 129.9, 126.1, 125.4, 122.2, 115.0, 113.8, 113.1, 112.9, 112.3, 111.0, 110.6, 110.1, 108.1, 98.2, 97.4, 75.8, 75.4, 75.1, 39.0, 29.9, 28.4, 28.3, 28.1, 26.8, 19.6, 19.5, 19.2. HRMS (ESI<sup>+</sup>): *m*/z calcd for C<sub>120</sub>H<sub>121</sub>N<sub>30</sub>O<sub>18</sub> [M+H]<sup>+</sup> 2270.9509; found 2270.9513.

#### 3. Solution studies

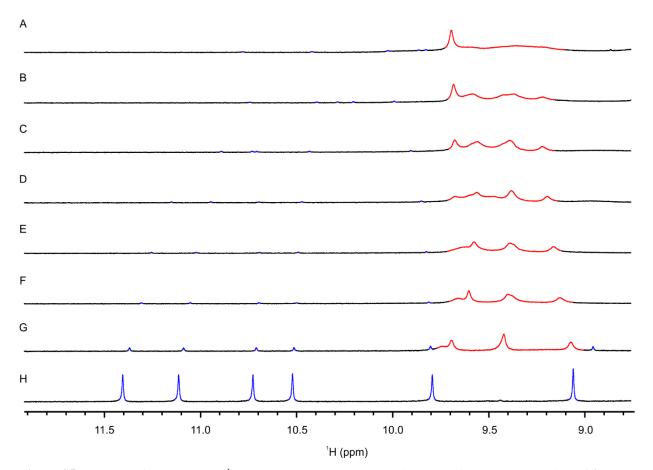



#### 3.1 Circular dichroism titrations (enlarged versions of the main text Figures)

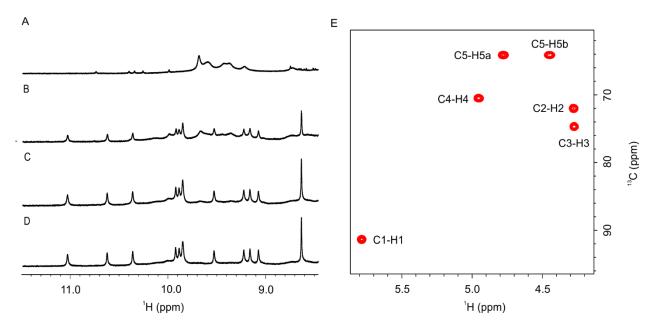
**Figure S1.** (A) Induced CD spectra upon binding of D-3 by (2)<sub>2</sub> in CHCl<sub>3</sub>/DMSO (9:1 vol/vol) at 298K,  $[(2)_2] = 96 \mu M$ . The red colored line corresponds to 7.5 equiv. of D-3 added; (B) Experimental ( $\blacksquare$ ) and calculated values (-) for the ICD binding study of receptor (2)<sub>2</sub> vs. D-3 with the corresponding species distribution diagram. Although only  $\Delta \varepsilon$  values at 367 nm are shown here, all wavelengths in the 340–390 nm region were used for the calculation of the binding constants.  $K_{a1} = 69180 \text{ M}^{-1}$ ;  $K_{a2} = 31620 \text{ M}^{-1}$ . Limiting  $\Delta \varepsilon = -105 \text{ cm}^2 \text{ mmol}^{-1}$ ;



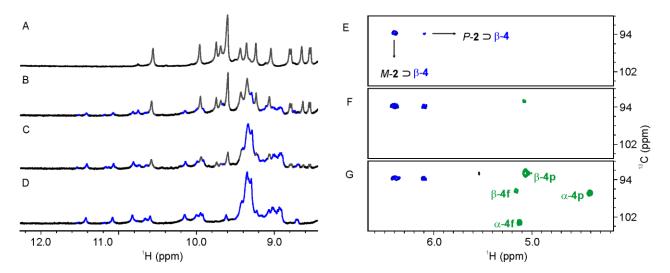

**Figure S2.** (A) Induced CD spectra upon binding of D-4 by (2)<sub>2</sub> in CHCl<sub>3</sub>/DMSO (9:1 vol/vol) at 298 K,  $[(2)_2] = 120 \mu M$ . The blue colored line corresponds to 12 equiv. of D-4 added. (B) Experimental ( $\blacksquare$ ) and calculated values (–) for the ICD binding study of receptor (2)<sub>2</sub> vs. D-4 with the corresponding species distribution diagram. Although only  $\Delta \varepsilon$  values at 365 nm are shown here, all wavelengths in the 340–390 nm region were used for the calculation of the binding constant.  $K_a = 21900 \text{ M}^{-1}$ . Limiting  $\Delta \varepsilon = 51 \text{ cm}^2 \text{ mmol}^{-1}$ .



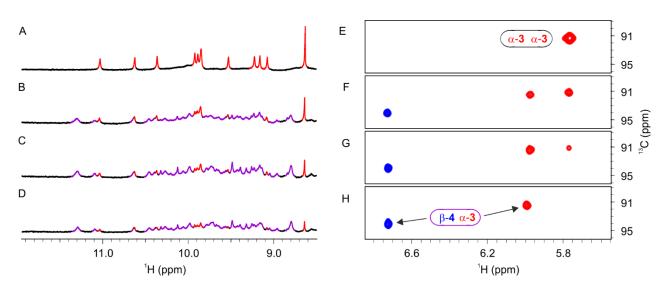

**Figure S3.** (A) Changes in the CD spectra of  $(2)_2 \supset (D-3)_2$  upon binding of D-4 in CHCl<sub>3</sub>/DMSO (9:1 vol/vol) at 298 K.  $[(2)_2] = 94 \ \mu\text{M}$ ;  $[D-3] = 755 \ \mu\text{M}$ . The purple colored line corresponds to 8.5 equiv. of D-4 added, relative to D-3; (B) Experimental (**■**) and calculated values (–) for the ICD binding study of  $(2)_2 \supset (D-3)_2$  vs. D-4 with the corresponding species distribution diagram. Although only  $\Delta\varepsilon$  values at 367 nm are shown here, all wavelengths in the 340–390 nm region were used for the calculation of the binding constant.  $K_a = 46800 \ \text{M}^{-1}$  for the equilibrium  $(2)_2 \supset D-3 + D-4 \Rightarrow (2)_2 \supset (D-3, D-4)$ . Limiting  $\Delta\varepsilon = -45 \ \text{cm}^2 \ \text{mmol}^{-1}$ .



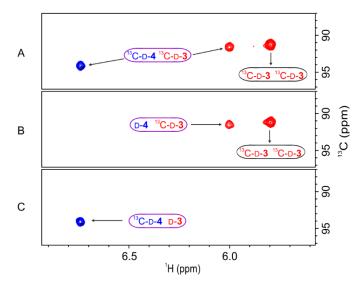




**Figure S4**. Excerpts from the 400 MHz <sup>1</sup>H NMR spectra showing the amide resonance region of  $(2)_2$  in CDCl<sub>3</sub> at 1 mM (A); 0.25 mM (B) and 0.05 mM (C) in CDCl<sub>3</sub> at 298K.

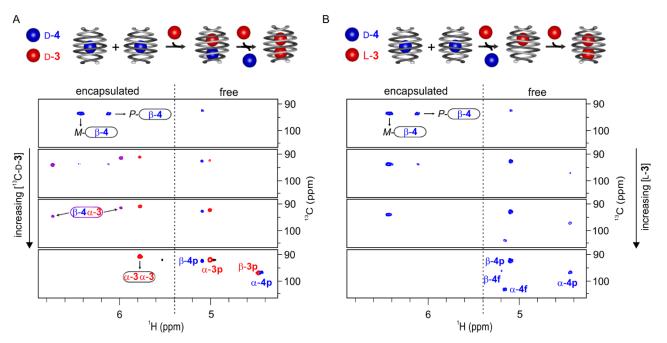



**Figure S5**. Excerpts of the 400 MHz <sup>1</sup>H NMR spectra at 298 K showing the amide resonance region of **2** at 1 mM in various CDCl<sub>3</sub>/DMSO-d<sub>6</sub> proportions (vol/vol): 9.5:0.5 (A); 9:1 (B); 8:2 (C); 7:3 (D); 6:4 (E); 5:5 (F); 7.5:2.5 (G) and neat DMSO-d<sub>6</sub> (H). Resonances highlighted in red belong to the double helical form, (**2**)<sub>2</sub>, while those depicted in blue correspond to the single helix **2**. The spectum at 9:1 vol/vol was used to determine  $K_{dim}$  which was found to be 400000 M<sup>-1</sup> in this solvent system.

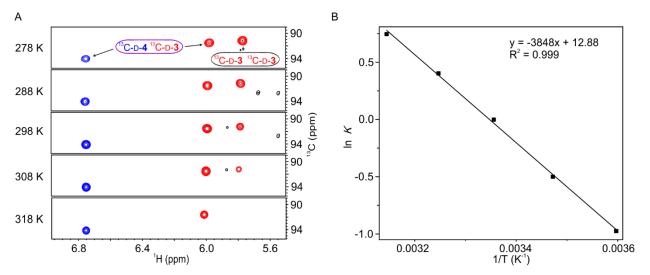



**Figure S6**. Excerpts from the 400 MHz <sup>1</sup>H NMR spectra showing the amide resonances of (2)<sub>2</sub> at 1 mM (298K) in CDCl<sub>3</sub>/DMSO-d<sub>6</sub> (9:1 vol/vol) in the presence of (A) 0 equiv.; (B) 1 equiv.; (C) 2 equiv. and (D) 3 equiv. of D-**3**. (E) Excerpt of the <sup>1</sup>H, <sup>13</sup>C HSQC spectrum showing correlation signature of two encapsulated uniformly <sup>13</sup>C-labelled  $\alpha$ -<sup>4</sup>C<sub>1</sub>-D-xylopyranose **3** (CDCl<sub>3</sub>/DMSO-d<sub>6</sub> 9:1 vol/vol).




**Figure S7.** Excerpts from the 400 MHz <sup>1</sup>H NMR spectra showing the amide resonances of capsule (2)<sub>2</sub> at 1 mM in CDCl<sub>3</sub>/DMSO-d<sub>6</sub> (9:1 vol/vol) and 243K in the presence of (A) 0 equiv.; (B) 0.5 equiv.; (C) 1.0 equiv. and (D) 2.0 equiv. of D-4. Excerpts from <sup>1</sup>H-<sup>13</sup>C HSQC spectra showing the <sup>1</sup>H correlations of C1 (anomeric carbon) of uniformly <sup>13</sup>C-labelled  $\beta$ -<sup>1</sup>C<sub>4</sub>-D-arabinopyranose recorded in the following conditions: (E) [(2)<sub>2</sub>] = 1.0 mM; [D-4]= 0.5 mM; (F) [(2)<sub>2</sub>] = 1.0 mM; [D-4]= 1.0 mM; (G) [(2)<sub>2</sub>] = 1.0 mM; [D-4]= 2.0 mM. Encapsulated and free forms of the sugar are represented in blue and green, respectively. All solutions were prepared in CDCl<sub>3</sub>/DMSO-d<sub>6</sub> (9:1 vol/vol) and the spectra recorded at 298K.

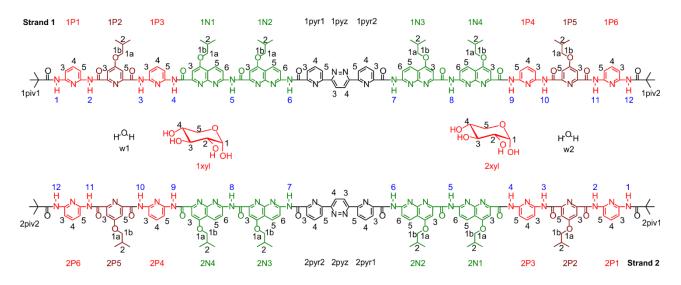



**Figure S8.** Excerpts from the 400 MHz <sup>1</sup>H NMR spectra showing the amide resonances of  $(2)_2 \supset (D-3)_2$  at 1 mM in CDCl<sub>3</sub>/DMSO-d<sub>6</sub> (9:1 vol/vol) and 298K in the presence of (A) 0 equiv.; (B) 1 equiv.; (C) 2 equiv. and (D) 3 equiv. of D-4 relative to D-3.  $(2)_2 \supset (D-3)_2$  and  $(2)_2 \supset (D-3,D-4)$  amide resonances are shown in red and purple, respectively. Excerpts from <sup>1</sup>H-<sup>13</sup>C HSQC spectra recorded in CDCl<sub>3</sub>/DMSO-d<sub>6</sub> (9:1 vol/vol) and 298K showing the <sup>1</sup>H correlations of C1 of encapsulated uniformly <sup>13</sup>C-labelled  $\alpha$ -<sup>4</sup>C<sub>1</sub>-D-xylopyranose and  $\beta$ -<sup>1</sup>C<sub>4</sub>-D-arabinopyranose recorded in the following conditions: (E)  $[(2)_2] = 1.0 \text{ mM}$ ; [3] = 2.0 mM; previous solution plus (F) [4] = 2.0 mM; (G) [4] = 6.0 mM. (H) at 318K. C1 correlations of D-3 and D-4 are represented in red and blue, respectively.



**Figure S9.** Excerpts from  ${}^{1}H{}^{-13}C$  HSQC spectra of solutions with  $[(2)_{2}] = [3] = [4] = 1.0$  mM prepared in CDCl<sub>3</sub>/DMSO-d<sub>6</sub> (9:1 vol/vol) and 298K, showing the  ${}^{1}H$  correlations of C1 of encapsulated uniformly  ${}^{13}C$ -labelled sugars: (A) both sugars labelled; (B) labelled D-3 and unlabeled D-4; (C) unlabelled D-3 and labeled D-4.




**Figure S10.** (A) Titration performed in CDCl<sub>3</sub>/DMSO-d<sub>6</sub> (9:1 vol/vol) and 298K using both uniformly <sup>13</sup>C-labelled D-3 and D-4, monitored by <sup>1</sup>H-<sup>13</sup>C HSQC. The starting spectra shows two <sup>1</sup>H-<sup>13</sup>C correlations for the anomeric C1 carbon of D-4 encapsulated in (2)<sub>2</sub> which is attributed to a unique tautomer of D-4 being encapsulated either in a *P* or *M* helices of (2)<sub>2</sub>. Upon increasing the concentration of D-3 three new correlations appear: two correspond to (2)<sub>2</sub>  $\supset$  (D-3;D-4) (in purple) and the other to the (2)<sub>2</sub>  $\supset$  (D-3)<sub>2</sub> complex. Adding excess D-3 eventually leads to complete replacement of D-4 by D-3 and to exclusive formation of (2)<sub>2</sub>  $\supset$  (D-3)<sub>2</sub>. (B) Titration performed in CDCl<sub>3</sub>/DMSO-d<sub>6</sub> (9:1 vol/vol) and 298K using uniformly <sup>13</sup>C-labelled D-4 and non-labelled L-3 (the <sup>13</sup>C-labelled L-enantiomer is not commercially available), monitored by <sup>1</sup>H-<sup>13</sup>C HSQC. The starting spectrum shows again the two <sup>1</sup>H-<sup>13</sup>C correlations for the anomeric C1 carbon of D-4 encapsulated in *P* and *M* helices of (2)<sub>2</sub>. Upon increasing the concentration of L-3 only correlations corresponding to free D-4 appear, indicating no heterocomplex forms and only the (2)<sub>2</sub>  $\supset$  (L-3)<sub>2</sub> complex predominates (not visible since L-3 is unlabeled). In both (A) and (B), the host is 1mM, starting spectrum has 1 equiv of D-4 and the others have 0.5, 1 and 4 equiv (top to bottom) of either D-3 or L-3. Only the spectral region of the <sup>1</sup>H correlations of C1 of the sugars are shown.



**Figure S11.** Excerpts from <sup>1</sup>H-<sup>13</sup>C HSQC spectra of solutions with  $[(2)_2] = 0.1 \text{ mM}$ ; [3] = 0.2 mM; [4] = 0.4 mM prepared in CDCl<sub>3</sub>/DMSO-d<sub>6</sub> (9:1 vol/vol) and 298K, showing the <sup>1</sup>H correlations of C1 of encapsulated uniformly <sup>13</sup>C-labelled sugars at the indicated temperatures (A) and corresponding Van't Hoff plot.  $\Delta\Delta H=32 \text{ kJ mol}^{-1}$ ;  $\Delta\Delta S=0.11 \text{ kJ mol}^{-1} \text{ K}^{-1}$ .

#### 4. NMR structure assignments

#### 4.1 NMR structure of the $(2)_2 \supset (D-3)_2$



Scheme S2. Labelling of the  $(2)_2 \supset (D-3)_2$ .

| Monomer | Atom                    | <sup>1</sup> H (ppm) | Monomer | Atom         | <sup>1</sup> H (ppm) |
|---------|-------------------------|----------------------|---------|--------------|----------------------|
| 1piv1   | C <u>H</u> <sub>3</sub> | 0.072                | 2piv1   | C <u>H</u> 3 | 0.072                |
|         | N <u>H</u> 1            | 7.334                |         | N <u>H</u> 1 | 7.334                |
| 101     | H3                      | 6.489                | 201     | H3           | 6.489                |
| 1P1     | H4                      | 6.610                | 2P1     | H4           | 6.610                |
|         | Н5                      | 6.453                |         | H5           | 6.453                |
|         | N <u>H</u> 2            | 10.358               |         | N <u>H</u> 2 | 10.358               |
|         | H3                      | 7.467                |         | H3           | 7.467                |
| 102     | H5                      | 7.153                | 202     | Н5           | 7.153                |
| 1P2     | H1a                     | 3.813                | 2P2     | H1a          | 3.813                |
|         | H1b                     | 3.735                |         | H1b          | 3.735                |
|         | H2                      | 2.068                |         | H2           | 2.068                |
| 1P3     | N <u>H</u> 3            | 9.832                |         | N <u>H</u> 3 | 9.832                |
|         | H3                      | 7.200                | 202     | H3           | 7.200                |
| 1P3     | H4                      | 7.223                | 2P3     | H4           | 7.223                |
|         | H5                      | 7.650                |         | H5           | 7.650                |
|         | N <u>H</u> 4            | 9.908                |         | N <u>H</u> 4 | 9.908                |
|         | H3                      | 6.538                |         | H3           | 6.538                |
|         | Н5                      | 8.096                |         | H5           | 8.096                |
| 1N1     | H6                      | 8.071                | 2N1     | H6           | 8.071                |
|         | H1a                     | 3.464                |         | H1a          | 3.464                |
|         | H1b                     | 3.690                |         | H1b          | 3.690                |
|         | H2                      | 2.132                |         | H2           | 2.132                |
|         | N <u>H</u> 5            | 10.576               |         | N <u>H</u> 5 | 10.576               |
|         | H3                      | 7.137                |         | H3           | 7.137                |

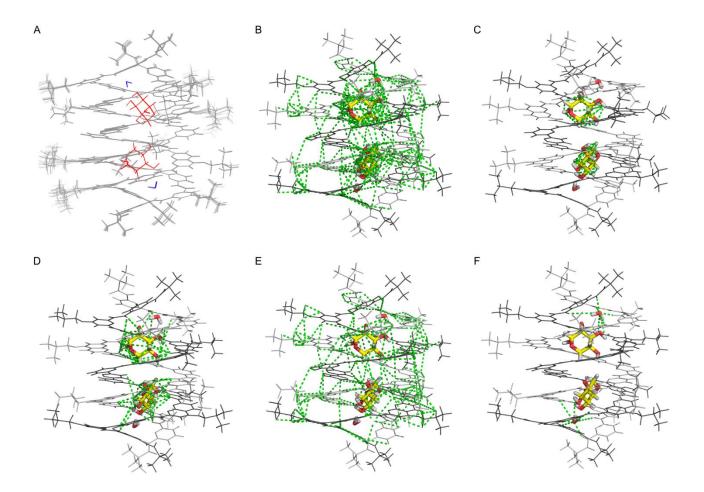
**Table S1.** Full assignment of the <sup>1</sup>H chemical shifts of  $(2)_2 \supset (D-3)_2$  in CDCl<sub>3</sub>/DMSO-d<sub>6</sub> (95:5) at 298K (800 MHz).

|        | Н5                      | 8.281          |        | Н5                      | 8.281  |
|--------|-------------------------|----------------|--------|-------------------------|--------|
|        | H6                      | 8.113          |        | H6                      | 8.113  |
| 1N2    | H1a                     | 3.963          | 2N2    | H1a                     | 3.963  |
|        | H1b                     | 3.884          |        | H1b                     | 3.884  |
|        | H2                      | 2.326          |        | H2                      | 2.326  |
|        | N <u>H</u> 6            | 9.493          |        | N <u>H</u> 6            | 9.493  |
|        | H3                      | 8.014          |        | H3                      | 8.014  |
| 1pyr1  | H4                      | 7.992          | 2pyr1  | H4                      | 7.992  |
|        | H5                      | 8.401          |        | H5                      | 8.401  |
| 1pyz   | H3                      | 8.589          | 2pyz   | H3                      | 8.589  |
| труг   | H4                      | 8.589          | 2ру2   | H4                      | 8.581  |
| 1.0000 | H4                      | 7.220          | ) mur) | H4                      | 7.220  |
| 1pyr2  |                         |                | 2pyr2  |                         |        |
|        | N <u>H</u> 7            | 9.163          |        | N <u>H</u> 7            | 9.163  |
|        | H6                      | 7.968          |        | H6                      | 7.968  |
| 1N3    | H5                      | 7.585          | 2N3    | H5                      | 7.585  |
|        | H3                      | 6.846          |        | H3                      | 6.846  |
|        | H1a                     | 3.714          |        | H1a                     | 3.714  |
|        | H1b                     | 3.967          |        | H1b                     | 3.967  |
|        | H2                      | 2.139          |        | H2                      | 2.139  |
|        | NH8                     | 10.998         |        | NH8                     | 10.998 |
|        | H6                      | 7.696          |        | H6                      | 7.696  |
| 1N4    | Н5                      | 7.895          | 2N4    | H5                      | 7.895  |
|        | H3                      | 6.561          |        | H3                      | 6.561  |
|        | H1a                     | 3.660          |        | H1a                     | 3.660  |
|        | H1b                     | 3.909          |        | H1b                     | 3.909  |
|        | H2                      | 2.320          |        | H2                      | 2.320  |
|        | NH10                    | 9.845          |        | NH10                    | 9.845  |
| 1P4    | H5                      | 7.454          | 2P4    | H5                      | 7.454  |
| 11 4   | H4                      | 6.807          | 214    | H4                      | 6.807  |
|        | H3                      | 7.310          |        | H3                      | 7.310  |
|        | NH9                     | 9.128          |        | NH9                     | 9.128  |
|        | Н5                      | 6.540          |        | H5                      | 6.540  |
| 1.05   | H3                      | 6.404          | 205    | H3                      | 6.404  |
| 1P5    | H1a                     | 3.203          | 2P5    | H1a                     | 3.203  |
|        | H1b                     | 3.310          |        | H1b                     | 3.310  |
|        | H2                      | 1.881          |        | H2                      | 1.881  |
|        | N <u>H</u> 11           | 9.070          |        | N <u>H</u> 11           | 9.070  |
| 100    | Н5                      | 6.242          |        | H5                      | 6.242  |
| 1P6    | H4                      | 5.493          | 2P6    | H4                      | 5.493  |
|        | H3                      | 6.378          |        | H3                      | 6.378  |
|        | N <u>H</u> 12           | 9.877          |        | N <u>H</u> 12           | 9.877  |
| 1piv2  | C <u>H</u> <sub>3</sub> | 0.880          | 2piv2  | C <u>H</u> <sub>3</sub> | 0.880  |
| -      | H1                      | 5.727          | -      | H1                      | 5.727  |
|        |                         |                |        | H2                      | 4.234  |
|        | H2                      | 4.234          |        |                         |        |
|        | H2<br>H3                | 4.234<br>4.216 |        |                         |        |
|        | H3                      | 4.216          |        | H3                      | 4.216  |
| 1xyl   |                         |                | 2xyl   |                         |        |

| 0 <u>H</u> 1 | 7.447 | 0 <u>H</u> 1 | 7.447 |
|--------------|-------|--------------|-------|
| 0 <u>H</u> 2 | 5.299 | 0 <u>H</u> 2 | 5.299 |
| 0 <u>H</u> 3 | 8.150 | 0 <u>H</u> 3 | 8.150 |
| O <u>H</u> 4 | 5.292 | 0 <u>H</u> 4 | 5.292 |

 $\textbf{Table S2.}^{13}C \text{ chemical shift assignment of } (\textbf{2})_2 \supset (D\textbf{-3})_2 \text{ in } CDCl_3/DMSO\textbf{-}d_6 \text{ (95:5) at } 298K \text{ (800 MHz).}$ 

| Monomer | Atom                    | <sup>13</sup> C (ppm) | Monomer | Atom                    | <sup>13</sup> C (ppm) |
|---------|-------------------------|-----------------------|---------|-------------------------|-----------------------|
| 1piv1   | <u>C</u> H <sub>3</sub> | 25.554                | 2piv1   | <u>C</u> H <sub>3</sub> | 25.554                |
|         | СО                      | 176.004               |         | СО                      | 176.004               |
| 1.D.1   | C3                      | 109.874               | 201     | C3                      | 109.874               |
| 1P1     | C4                      | 137.672               | 2P1     | C4                      | 137.672               |
|         | C5                      | 111.205               |         | C5                      | 111.205               |
|         | СО                      | 166.531               |         | СО                      | 166.531               |
|         | C1                      | 74.558                |         | C1                      | 74.558                |
| 1P2     | C2                      | 27.496                | 2P2     | C2                      | 27.496                |
| 11 2    | C3                      | 110.397               | 212     | C3                      | 110.397               |
|         | C5                      | 112.493               |         | C5                      | 112.493               |
|         | CO                      | 160.718               |         | CO                      | 160.718               |
| 1P3     | C4                      | 135.744               | 2P3     | C4                      | 135.744               |
|         | C5                      | 110.706               |         | C5                      | 110.706               |
|         | СО                      | 161.308               |         | СО                      | 161.308               |
| 13.11   | C1                      | 74.123                |         | C1                      | 74.123                |
| 1N1     | C3                      | 96.625                | 2N1     | C3                      | 96.625                |
|         | C5                      | 132.216               |         | C5                      | 132.216               |
|         | C6                      | 114.958               |         | C6                      | 114.958               |
|         | C1                      | 75.388                |         | C1                      | 75.388                |
| 1N2     | C2                      | 27.673                | 23.72   | C2                      | 27.673                |
|         | C3                      | 98.301                | 2N2     | C3                      | 98.301                |
|         | C5                      | 134.426               |         | C5                      | 134.426               |
|         | C6                      | 113.285               |         | C6                      | 113.285               |
|         | C3                      | 123.318               |         | C3                      | 123.318               |
| 1pyr1   | C4                      | 138.077               | 2pyr1   | C4                      | 138.077               |
|         | C5                      | 125.347               |         | C5                      | 125.347               |
| 1pyz    | C3                      | 122.041               | 2pyz    | C3                      | 122.041               |
|         | C4                      | 124.558               |         | C4                      | 124.558               |
|         | C1                      | 75.186                |         | C1                      | 75.186                |
| 11/2    | C2                      | 27.689                | 2012    | C2                      | 27.689                |
| 1N3     | C3                      | 97.953                | 2N3     | C3                      | 97.953                |
|         | C5                      | 131.544               |         | C5                      | 131.544               |
|         | C6 114.694              |                       | C6      | 114.694                 |                       |
|         | СО                      | 159.433               |         | СО                      | 159.433               |
|         | C1                      | 75.008                |         | C1                      | 75.008                |
| 1N4     | C2                      | 27.723                | 2N4     | C2                      | 27.723                |
| 11.1.1  | C3                      | 97.421                | 2117    | C3                      | 97.421                |
|         | C5                      | 133.766               |         | C5                      | 133.766               |

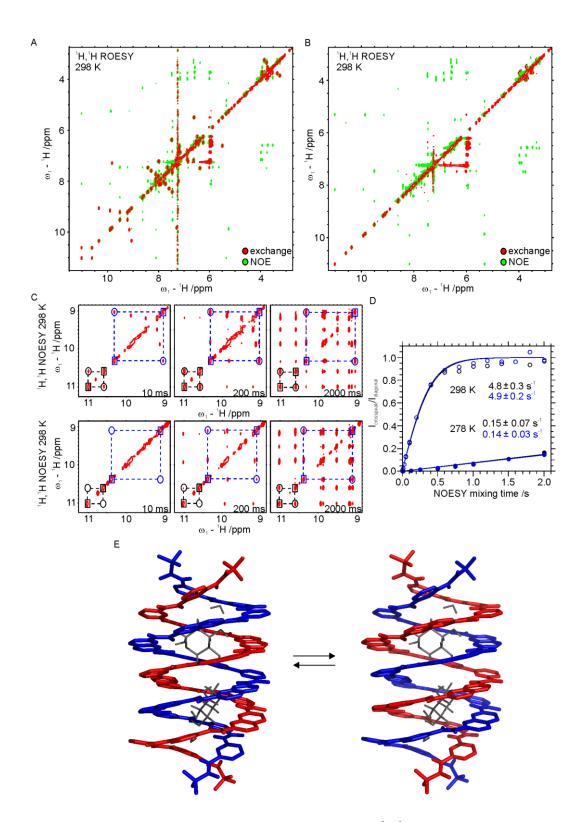

|       | C6                      | 114.444 |       | C6                      | 114.444 |
|-------|-------------------------|---------|-------|-------------------------|---------|
|       | C3                      | 108.243 |       | C3                      | 108.243 |
| 1P4   | C4                      | 139.647 | 2P4   | C4                      | 139.647 |
|       | C5                      | 108.208 |       | C5                      | 108.208 |
|       | СО                      | 160.306 |       | СО                      | 160.306 |
|       | C1                      | 74.096  |       | C1                      | 74.096  |
| 1P5   | C2                      | 27.255  | 2P5   | C2                      | 27.255  |
| 11.5  | C3                      | 109.498 | 215   | C3                      | 109.498 |
|       | C4                      | 165.114 |       | C4                      | 165.114 |
|       | C5                      | 108.310 |       | C5                      | 108.310 |
|       | CO                      | 160.139 |       | CO                      | 160.139 |
|       | C3                      | 109.162 |       | C3                      | 109.162 |
| 104   | C4                      | 136.454 |       | C4                      | 136.454 |
| 1P6   | C5                      | 110.735 | 2P6   | C5                      | 110.735 |
|       | CO                      | 176.808 |       | CO                      | 176.808 |
| 1piv2 | <u>C</u> H <sub>3</sub> | 26.093  | 2piv2 | <u>C</u> H <sub>3</sub> | 26.093  |

**Table S3.** Full assignment of the hydrogen-bound <sup>15</sup>N chemical shifts of  $(2)_2 \supset (D-3)_2$  in CDCl<sub>3</sub>/DMSO-d<sub>6</sub> (95:5) at 298K (800 MHz).

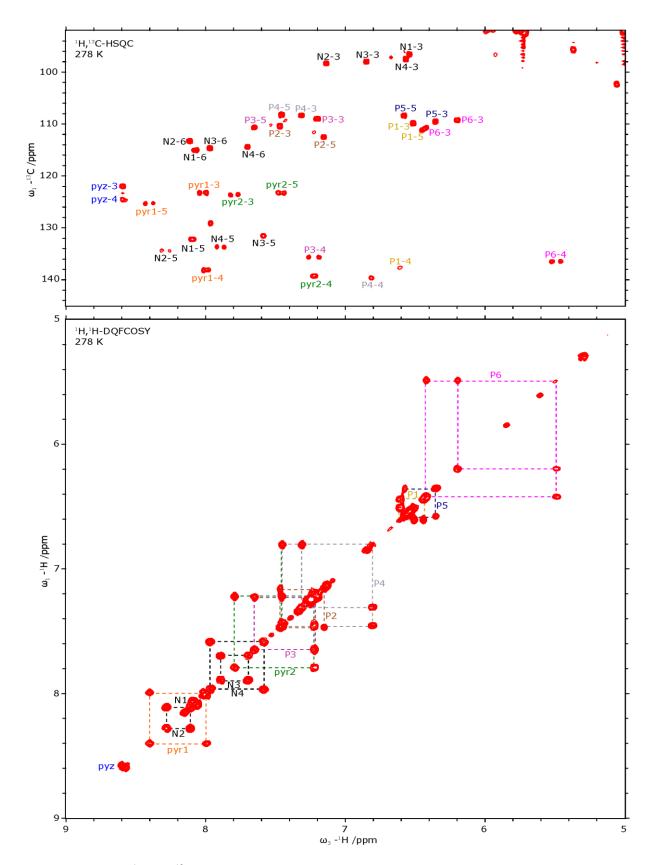
| Monomer | Atom | <sup>15</sup> N (ppm) | Monomer | Atom | <sup>15</sup> N (ppm) |
|---------|------|-----------------------|---------|------|-----------------------|
| 1P1     | N1   | 132.566               | 2P1     | N1   | 132.566               |
| 1P1     | N2   | 130.605               | 2P1     | N2   | 130.605               |
| 1P3     | N3   | 130.930               | 2P3     | N3   | 130.930               |
| 1P3     | N4   | 129.685               | 2P3     | N4   | 129.685               |
| 1N1     | N5   | 133.198               | 2N1     | N5   | 133.198               |
| 1N2     | N6   | 128.134               | 2N2     | N6   | 128.134               |
| 1N3     | N7   | 131.556               | 2N3     | N7   | 131.556               |
| 1N4     | N8   | 136.183               | 2N4     | N8   | 136.183               |
| 1P4     | N10  | 131.896               | 2P4     | N10  | 131.896               |
| 1P4     | N9   | 127.384               | 2P4     | N9   | 127.384               |
| 1P6     | N11  | 130.868               | 2P6     | N11  | 130.868               |
| 1P6     | N12  | 134.732               | 2P6     | N12  | 134.732               |

| NMR distanc                | e restraints                 |  |  |  |  |  |
|----------------------------|------------------------------|--|--|--|--|--|
| Total 334                  |                              |  |  |  |  |  |
| Capsule-capsule            | 190                          |  |  |  |  |  |
| Sugar-capsule              | 82                           |  |  |  |  |  |
| Sugar-sugar                | 48                           |  |  |  |  |  |
| Water-sugar                | 12                           |  |  |  |  |  |
| Water-capsule              | 2                            |  |  |  |  |  |
| Structure statistics (mean | and standard deviation)      |  |  |  |  |  |
| Violat                     | ions                         |  |  |  |  |  |
| Distance restraints (Å)    | 0.012±0.002                  |  |  |  |  |  |
| Energy (kJ/mol)            | 460±10                       |  |  |  |  |  |
| Minimization Ene           | ergies (kJ/mol) <sup>a</sup> |  |  |  |  |  |
| Total                      | -121±20                      |  |  |  |  |  |
| Stretch                    | 269.8±0.7                    |  |  |  |  |  |
| Bend                       | 1328±12                      |  |  |  |  |  |
| Tortion                    | 200±2                        |  |  |  |  |  |
| Improper torsion           | 8.8±0.4                      |  |  |  |  |  |
| VDW                        | 2866±3                       |  |  |  |  |  |
| Electrostatic              | -4948±2                      |  |  |  |  |  |
| Cross terms                | -22±2                        |  |  |  |  |  |
| Solvation                  | -293±2                       |  |  |  |  |  |
| rmsd between 6220          | ) atoms pairs (Å)            |  |  |  |  |  |
| 1.025                      |                              |  |  |  |  |  |

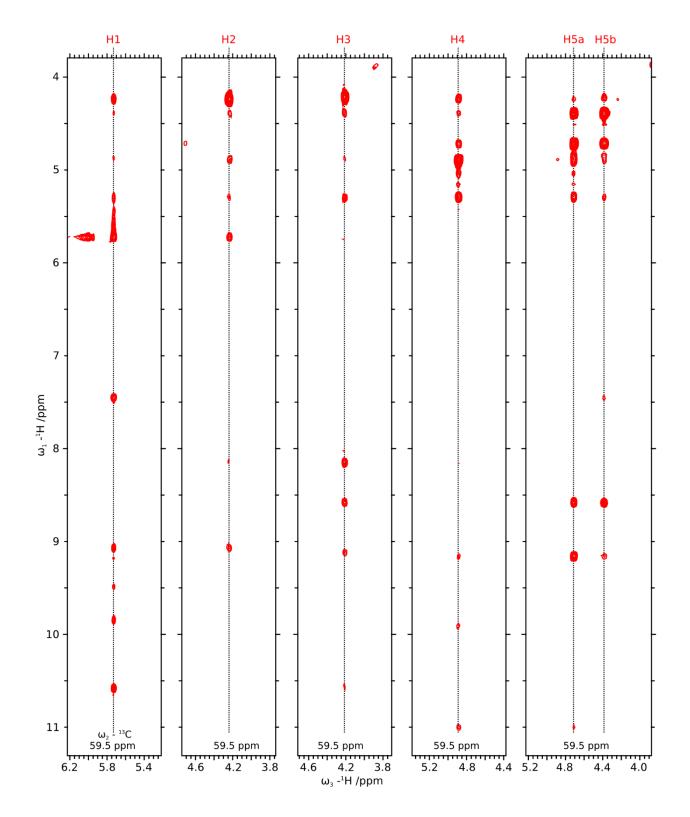
<sup>a</sup> Final energies from minimization by using MMFFs (Maestro v. 6.5.007)



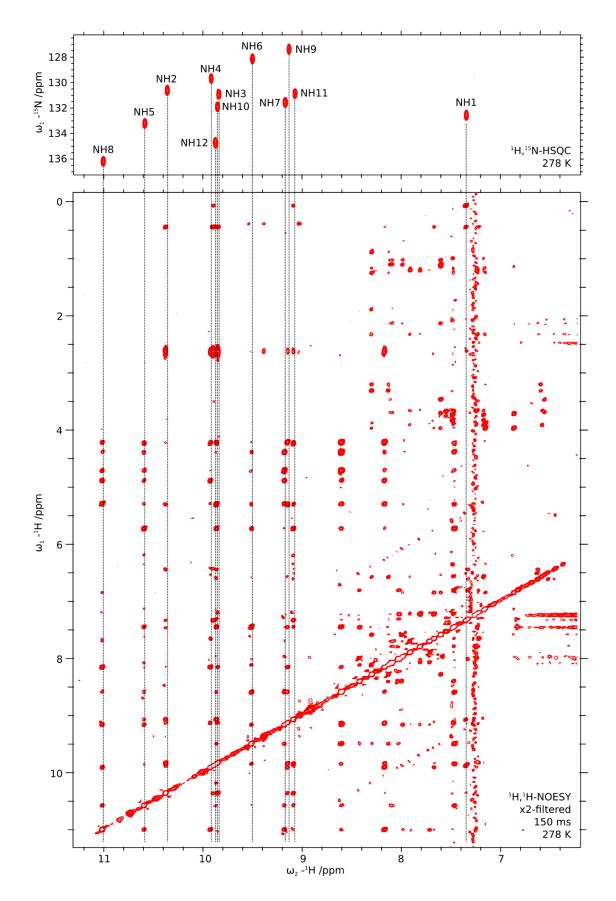

**Figure S12.** High-resolution NMR structure of the  $(2)_2 \supset (D-3)_2$  complex. (A) ensemble of 20 structures. (B) Distance restraints used to calculate the ensemble of 20 structures. Dotted green lines indicate the complete set of 336 distance restraints mapped onto a representative structure from the ensemble. (C) Location of the 48 intramolecular xylose restraints that confirm the  $\alpha$ -<sup>4</sup>C<sub>1</sub>-pyranose conformation of the encapsulated guests. (D) Location of the 82 intermolecular capsule-xylose restraints used to position the guests within the capsule. (E) Location of the 190 inter- and intra-strand restraints to position the strands relative to one another, as well as the side chains. (F) Location of the 14 distance restraints used to position the water molecules. In all representations each strand is shown in tube representation and colored in a different tone of gray. Oxygen atoms are colored in red; carbon atoms of the guests are colored in yellow.


|                         | d (Å) <sup>b</sup> |  |
|-------------------------|--------------------|--|
| (1P1)NH1…O(w1)          | 2.707(4)           |  |
| (1P2)NH3…O(w1)          | 2.16(2)            |  |
| (2P6)NH12…O(w1)         | 2.178(8)           |  |
| (w1)OH1…O3(xyl1)        | 1.95(2)            |  |
| (w1)OH1…N(1P3)          | 2.18(2)            |  |
| (w1)OH2···O4(xyl1)      | 2.63(4)            |  |
| (xyl1)OH2…N(2P4)        | 2.30(3)            |  |
| (2P6)NH11…O3(xyl1)      | 2.31(4)            |  |
| (1P3)NH4…O4(xyl1)       | 2.47(3)            |  |
| (xyl1)OH3…N(2N4)        | 1.881(3)           |  |
| (2N4)NH8…O5(xyl1)       | 1.741(1)           |  |
| (xyl1)OH4…N(2N3)        | 2.046(2)           |  |
| (1N1)NH5…O1(xyl1)       | 2.079(9)           |  |
| (xyl1)OH1…N(1N2)        | 1.777(7)           |  |
| (2P1)NH2…O1(w2)         | 2.706(7)           |  |
| (2P3)NH3…O1(w2)         | 2.15(3)            |  |
| (1P6)NH12…O2(w2)        | 2.18(1)            |  |
| (w2)OH1…N(2P3)          | 2.14(3)            |  |
| (w2)OH1…O4(xyl2)        | 1.82(7)            |  |
| (w2)OH2…O3(xyl2)        | 1.94(2)            |  |
| (1P6)NH11…O3(xyl2)      | 2.31(3)            |  |
| $(1P4)N\cdotsOH2(xyl2)$ | 2.25(3)            |  |
| (xyl2)OH3…N(1N3)        | 1.87(1)            |  |
| (2P3)NH4…O4(xyl2)       | 2.38(3)            |  |
| (xyl2)OH4…N(1N3)        | 2.383(3)           |  |
| (1N4)NH8…O5(xyl2)       | 1.740(1)           |  |
| (2N1)NH5…O1(xyl2)       | 2.068(7)           |  |
| (xyl2)OH1…N(2N2)        | 1.786(5)           |  |

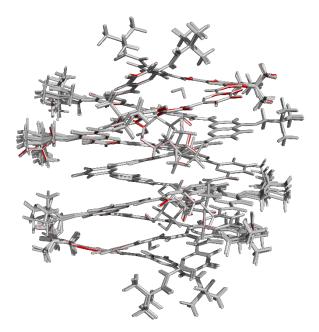
**Table S5.** OH…N, NH…O and OH…O hydrogen bonding distances in the  $(2)_2 \supset (D-3)_2$  complex as found in the NMR structure.<sup>*a*</sup>


<sup>*a*</sup> Atom numbers are those of Scheme S2. <sup>*b*</sup> Values in parenthesis are standard deviations in the last significant figure.

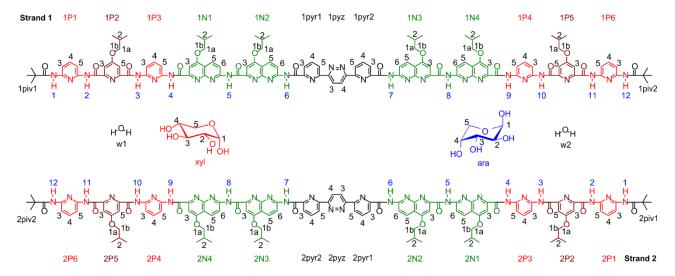



**Figure S13.** Exchange rate measurement for the  $(2)_2 \supset (D-3)_2$  complex. (A) <sup>1</sup>H,<sup>1</sup>H-ROESY spectrum of 1 mM  $(2)_2$  with 2 mM natural abundance D-3 in CDCl<sub>3</sub>/DMSO-d<sub>6</sub> (95:5), measured at 298 K and a field strength of 700 MHz. Crosspeaks arising from chemical exchange are in red, and crosspeaks due to nOe have the inverse sign and are shown in green. All of the equivalent protons between the two stands of the the foldamer double helix display chemical exchange. (B) <sup>1</sup>H,<sup>1</sup>H-ROESY of the same sample measured at 278 K. Note the chemical exchange is essentially absent at this lower temperature. (C) Quantitification of the exchange rates at 298 K (top) and 278 K (bottom) using <sup>1</sup>H,<sup>1</sup>H-NOESY spectra with varying mixing times on a sample of 1 mM (2)<sub>2</sub> with 2 mM natural abundance D-3 in CDCl<sub>3</sub>/DMSO-d<sub>6</sub> (95:5), measured at 298 K and a field strength of 700 MHz. (D) Exchange rates obtained from a fit of the intensity ratio of the crosspeak versus the diagonal peak from the <sup>1</sup>H,<sup>1</sup>H-NOESY spectra using the Qti plot program. (E) Rapid exchange occurs at 298 K whereby the relative positions of the two strands in the double helix interconvert. Due to the strand symmetry, the two populations are otherwise spatially identical. This is reflected by the fact that the bound xylose displays a single set of chemical shifts.




**Figure S14.** Aromatic <sup>1</sup>H and <sup>13</sup>C chemical shift assignment at 278 K of (2)<sub>2</sub> within the (2)<sub>2</sub>  $\supset$  (D-3)<sub>2</sub> complex. Top, aromatic region of a <sup>1</sup>H,<sup>13</sup>C-HSQC spectra measured on a sample of 1 mM (2)<sub>2</sub> and 2 mM <sup>13</sup>C-labeled (D-3)<sub>2</sub> in CDCl<sub>3</sub>/DMSO-d<sub>6</sub> (95:5) at a field strength of 700 MHz. Crosspeaks are annotated by residue name and atom number as in Scheme S2. Bottom, aromatic region of a <sup>1</sup>H,<sup>1</sup>H-COSY measured on the same sample. The spin systems of the aromatic rings are connected by dashed lines and annotated by residue number. Note the the chemical shifts at 278 K have the same values as observed for the sample at 298 K (Tables S1-S3).




**Figure S15.** nOe crosspeaks involving xylose <sup>13</sup>C-bound protons in the  $(2)_2 \supset (D-3)_2$  complex at 278 K. Selected 2D strips from the 3D <sup>13</sup>C-HSQC-NOESY (150 ms mixing time) measured on a sample of 1 mM  $(2)_2$  and 2 mM <sup>13</sup>C-labeled D-3 in CDCl<sub>3</sub>/DMSO-d<sub>6</sub> (95:5) at a field strength of 700 MHz. The <sup>13</sup>C frequency of each strip is indicated at the bottom of each panel, and the identity of each proton of the encapsulated <sup>13</sup>C-labeled xylose is indicated at the top. Crosspeaks indicate all intramolecular and intermoleclar protons in close proximity within the the  $(2)_2 \supset (D-3)_2$  complex.



**Figure S16.** nOe crosspeaks involving foldamer amide protons in the  $(2)_2 \supset (D-3)_2$  complex at 278 K. Top, natural abundance <sup>1</sup>H<sup>15</sup>N-HSQC measured on a sample of 1 mM  $(2)_2$  and 2 mM <sup>13</sup>C-labeled D-3 in CDCl<sub>3</sub>/DMSO (95:5) at a field strength of 700 MHz. The amide crosspeaks are annotated as in Scheme S2. Bottom, selected region of the x2-filtered <sup>1</sup>H, <sup>1</sup>H-NOESY (150 ms mixing time) on the same sample. Note that the horizontal axis (w2) is filtered to exclude all protons connected to <sup>13</sup>C nuclei, whereas the other dimension observes all protons. Crosspeaks indicate all intramolecular and intermolecular protons in close proximity within the the  $(2)_2 \supset (D-3)_2$  complex.

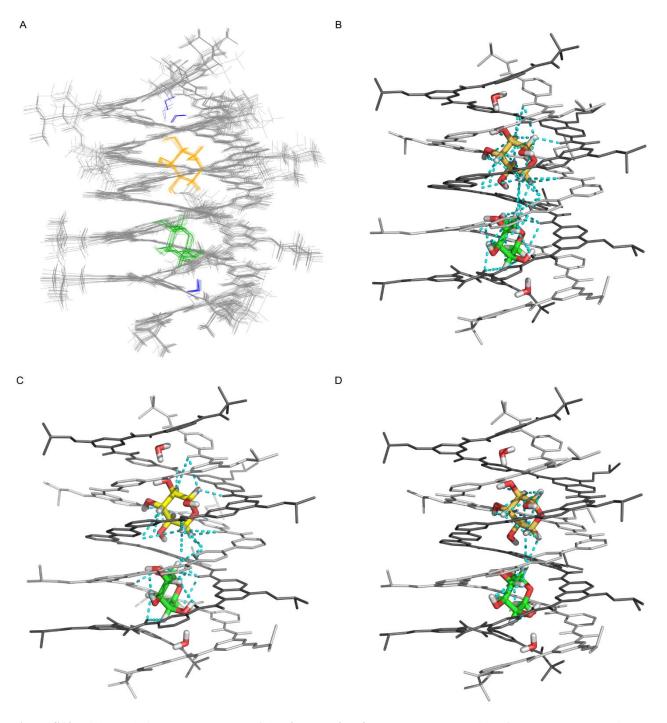


**Figure S17.** Superposition of the ensemble of 20 high-resolution NMR structures (grey) with the X-ray crystal structure (red).



#### **4.2** NMR structure of the (2)<sub>2</sub> ⊃ (D-3;D-4)

Scheme S3. Labelling of the  $(2)_2 \supset (D-3;D-4)$  complex.

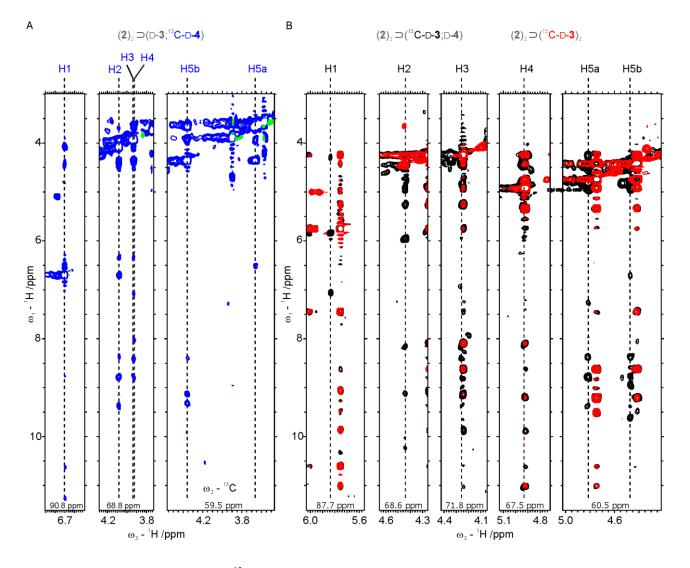

| Monomer     | Atom          | <sup>1</sup> H (ppm) | Monomer     | Atom          | <sup>1</sup> H (ppm) |
|-------------|---------------|----------------------|-------------|---------------|----------------------|
| 1P1         | N <u>H</u> 1  | 7.133                | 2P1         | N <u>H</u> 2  | 9.948                |
|             | N <u>H</u> 2  | 10.235               |             |               |                      |
| 1P3         | N <u>H</u> 3  | 9.775                | 2P3         | N <u>H</u> 3  | 7.994                |
|             | N <u>H</u> 4  | 10.027               |             | N <u>H</u> 4  | 9.310                |
| 1N1         | N <u>H</u> 5  | 10.439               | 2N1         | N <u>H</u> 5  | 10.593               |
| 1N2         | N <u>H</u> 6  | 9.616                | 2N2         | N <u>H</u> 6  | 10.356               |
| 1pyz        | H3            | 8.805                | 2pyz        | H3            | 8.782                |
|             | H4            | 9.373                |             | H4            | 8.367                |
| 1N3         | N <u>H</u> 7  | 11.247               | 2N3         | N <u>H</u> 7  | 8.941                |
| 1N4         | NH8           | 11.264               | 2N4         | NH8           | 11.060               |
| 1P4         | NH9           | 9.135                | 2P4         | NH9           | 9.168                |
|             | NH10          | 8.778                |             | NH10          | 9.956                |
| 1P6         | N <u>H</u> 11 | 8.386                | 2P6         | N <u>H</u> 11 | 9.116                |
|             |               |                      |             | N <u>H</u> 12 | 9.696                |
|             | H1            | 5.923                |             | H1            | 6.698                |
|             | H2            | 4.412                |             | H2            | 4.081                |
|             | H3            | 4.262                |             | H3            | 3.934                |
|             | H4            | 4.936                |             | H4            | 3.928                |
| D- <b>3</b> | H5a           | 4.467                | D- <b>4</b> | H5a           | 3.664                |
|             | H5b           | 4.816                |             | H5b           | 4.360                |
|             | 0 <u>H</u> 1  | 7.169                |             | 0 <u>H</u> 1  | 6.514                |
|             | 0 <u>H</u> 2  | 5.255                |             | 0 <u>H</u> 2  | 7.083                |
|             | 0 <u>H</u> 3  | 8.155                |             | 0 <u>H</u> 3  | 6.344                |
|             | 0 <u>H</u> 4  | 4.456                |             | 0 <u>H</u> 4  | 8.404                |

**Table S6.** Partial assignment of the <sup>1</sup>H chemical shifts of  $(2)_2 \supset (D-3;D-4)$  in CDCl<sub>3</sub>/ DMSO-d<sub>6</sub> (95:5) at 298K (800MHz).

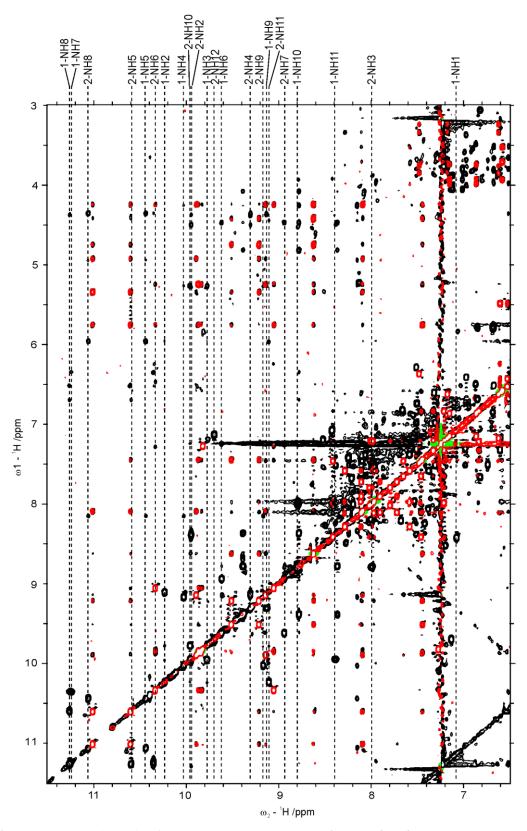
| NMR distance               | e restraints                 |
|----------------------------|------------------------------|
| Total                      | 54                           |
| xylose-capsule             | 18                           |
| arabinose-capsule          | 12                           |
| xylose-xylose              | 12                           |
| arabinose-arabinose        | 10                           |
| xylose-arabinose           | 2                            |
| Structure statistics (mean | and standard deviation)      |
| Violat                     | ions                         |
| Distance restraints (Å)    | 0.002 ±0.004                 |
| Energy (kJ/mol)            | 16±3                         |
| Minimization En            | ergies (kJ/mol) <sup>a</sup> |
| Total                      | -941±18                      |
| Stretch                    | 286±7                        |
| Bend                       | 1018±5                       |
| Tortion                    | 133±5                        |
| Improper torsion           | 4.1±0.3                      |
| VDW                        | 2526±28                      |
| Electrostatic              | -4581±10                     |
| Cross terms                | 15±2                         |
| Solvation                  | -297±3                       |
| rmsd between 434-          | 4 atoms pairs (Å)            |
| 1.30                       | 00                           |

## **Table S7.** NMR statistics for the ensemble of fifteen structures of $(2)_2 \supset (D-3;D-4)$

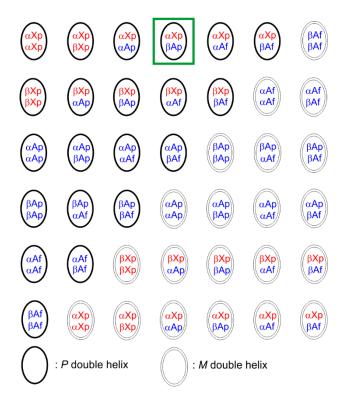
<sup>a</sup> Final energies from minimization by using MMFFs (Maestro v. 6.5.007)




**Figure S18.** High-resolution NMR structure of the  $(2)_2 \supset (D-3;D-4)$  complex. (A) ensemble of 20 structures. (B) Distance restraints used to calculate the ensemble of 20 structures. Dotted cyan lines indicate the complete set of 54 distance restraints mapped onto a representative structure from the ensemble. (C) Location of the 30 intermolecular capsule-sugar restraints used to position the guests within the capsule. (D) Location of the 12 intramolecular restraints that confirm the conformation of the encapsulated guests and of the 2 inter-sugar restraints. In all representations each strand is shown in tube representation and colored in a different tone of gray. Oxygen atoms are colored in red; carbon atoms of D-3 and D-4 are colored in yellow and green, respectively.

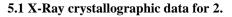

|                   | d (Å) <sup>b</sup> |
|-------------------|--------------------|
| (w1)OH2…N(1P1)    | 2.4(2)             |
| (2P4)NH10O3(xyl)  | 2.14(9)            |
| (1P1)NH2···O(w1)  | 2.00(5)            |
| (1P3)NH3…O(w1)    | 2.0(1)             |
| (w1)OH2…N(2P6)    | 2.1(2)             |
| (w1)OH1···O3(xyl) | 2.6(4)             |
| (2P6)NH11O3(xyl)  | 2.2(2)             |
| (xyl)OH2···N(2P4) | 2.6(3)             |
| (2P4)NH9…O4(xyl)  | 1.94(6)            |
| (xyl)OH3…N1(2N4)  | 2.12(8)            |
| (xyl)OH3…N2(2N4   | 2.03(3)            |
| (1N1)NH5…O1(xyl)  | 2.6(2)             |
| (xyl)OH1…N(1N2)   | 1.77(4)            |
| (1N3)NH7…O5(xyl)  | 2.5(1)             |
| (xyl)OH4…N(1N3)   | 1.91(2)            |
| (2P1)NH2…O(w2)    | 2.00(3)            |
| (2P3)NH3…O(w2)    | 2.1(1)             |
| (1P6)NH12···O(w2) | 2.2(1)             |
| (w2)OH2…N(1P6)    | 2.30(9)            |
| (w2)OH2…N(2P1)    | 2.5(2)             |
| (w2)OH1… O5(ara)  | 2.08(7)            |
| (1P4)NH10…O4(ara) | 1.89(6)            |
| (ara)OH4…N(1N4)   | 2.3(1)             |
| (1N4)NH8…O1(ara)  | 1.93(9)            |
| (2N1)NH5…O2       | 2.08(7)            |
| (ara)OH2…N(2N2)   | 1.98(2)            |
| (ara)OH3…N(1P4)   | 1.995(9)           |
| (2N2)NH6…O3(ara)  | 2.15(9)            |
| (ara)OH1…N(1N3)   | 1.85(4)            |
| (1P4)NH9…O5(ara)  | 2.0(2)             |
| (ara)OH4…N(1N4)   | 2.4(1)             |

**Table S8.** OH…N, NH…O and OH…O hydrogen bonding distances in the  $(2)_2 \supset (D-3, D-4)$  complex.<sup>*a*</sup>


 $^{a}$  Atom numbers are those of Scheme S3.  $^{b}$  Values in parenthesis are standard deviations in the last significant figure.



**Figure S19.** nOe crosspeaks involving <sup>13</sup>C-bound protons in the  $(2)_2 \supset (D-3, D-4)$  complex. (A) Selected 2D strips from the 3D <sup>13</sup>C-HSQC-NOESY (150 ms mixing time) measured on a sample of 1 mM (2)<sub>2</sub> with 1 mM natural abundance D-**3** and 1 mM <sup>13</sup>C-labeled D-**4** in CDCl<sub>3</sub>/DMSO-d<sub>6</sub> (95:5) at a field strength of 800 MHz. The <sup>13</sup>C frequency of each strip is indicated at the bottom of each panel, and the identity of each proton of the encapsulated <sup>13</sup>C-labeled D-arabinose is indicated at the top. Crosspeaks indicate all intramolecular and intermoleclar protons in close proximity within the the  $(2)_2 \supset (D-3, D-4)$  complex. (B) Selected 2D strips from the 3D <sup>13</sup>C-HSQC-NOESY (150 ms mixing time), this time measured on a sample of 1 mM (2)<sub>2</sub> with 1 mM <sup>13</sup>C-labeled D-**3** and 1 mM natural abundance D-**4** in CDCl<sub>3</sub>/DMSO (95:5) at a field strength of 800 MHz (black peaks). For comparison, the spectrum is by the 3D <sup>13</sup>C-HSQC-NOESY of the sample containing only xylose (red peaks): 1 mM (2)<sub>2</sub> and 2 mM <sup>13</sup>C-labeled D-**3** in CDCl<sub>3</sub>/DMSO-d<sub>6</sub> (95:5). The crosspeaks that are similar in both samples correspond to the homomeric complex (2)<sub>2</sub>  $\supset$  (D-**3**)<sub>2</sub>, whereas the black crosspeaks unique to the first spectrum belong to the heteromeric complex (2)<sub>2</sub>  $\supset$  (D-**3**).




**Figure S20.** nOe crosspeaks involving foldamer amide protons in the  $(2)_2 \supset (D-3, D-4)$  complex. Selected region from two x2-filtered <sup>1</sup>H,<sup>1</sup>H-NOESY (150 ms mixing time) spectra. The first spectrum (in black) used a sample containing 1 mM (2)<sub>2</sub>, 1 mM <sup>13</sup>C-labelled D-3 and 1 mM natural abundance D-4, in CDCl<sub>3</sub>/DMSO-d<sub>6</sub> (95:5) at a field strength of 800 MHz. For comparison, the second spectrum (in red) uses the sample containing only xylose: 1 mM (2)<sub>2</sub> and 2 mM <sup>13</sup>C-labeled D-3 in CDCl<sub>3</sub>/DMSO (95:5). Note that the horizontal axis (w2) is filtered to exclude all protons connected to <sup>13</sup>C nuclei, whereas the other dimension observes all protons. The crosspeaks that are similar in both samples correspond to the homomeric complex (2)<sub>2</sub>  $\supset$  (D-3)<sub>2</sub>, whereas the black crosspeaks unique to the first spectrum belong to the heteromeric complex (2)<sub>2</sub>  $\supset$  (D-3, D-4). The foldamer double helix amides unique to the heteromeric complex (2)<sub>2</sub>  $\supset$  (D-3, D-4) are indicated by dashed lines and annotated as in Scheme S3.



**Figure S21.** List of theoretical diastereoisomers which can form when P/M (2)<sub>2</sub> is mixed with D-xylose and D-arabinose. The list consists of 42 diastereomeric complexes.  $\alpha Xp$  and  $\beta Xp$  stand for  $\alpha$ -D-xylopyranose and  $\beta$ -D-xylopyranose, respectively.  $\alpha Ap$ ,  $\beta Ap$ ,  $\alpha Af$  and  $\beta Af$  stands for  $\alpha$ -D-arabinopyranose,  $\beta$ -D-arabinopyranose,  $\alpha$ -D-arabinofuranose and  $\beta$ -D-arabinofuranose. Note that only the 1:2 complex are considered.

## 5. X-Ray crystallography



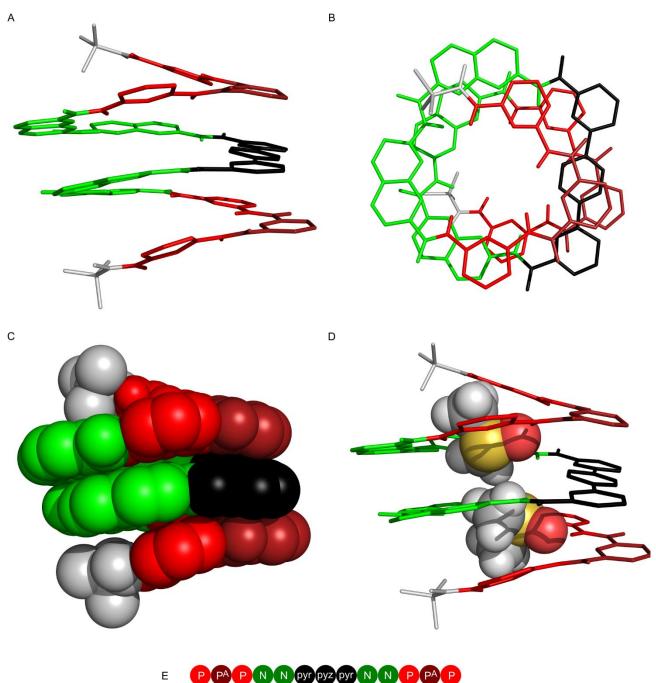
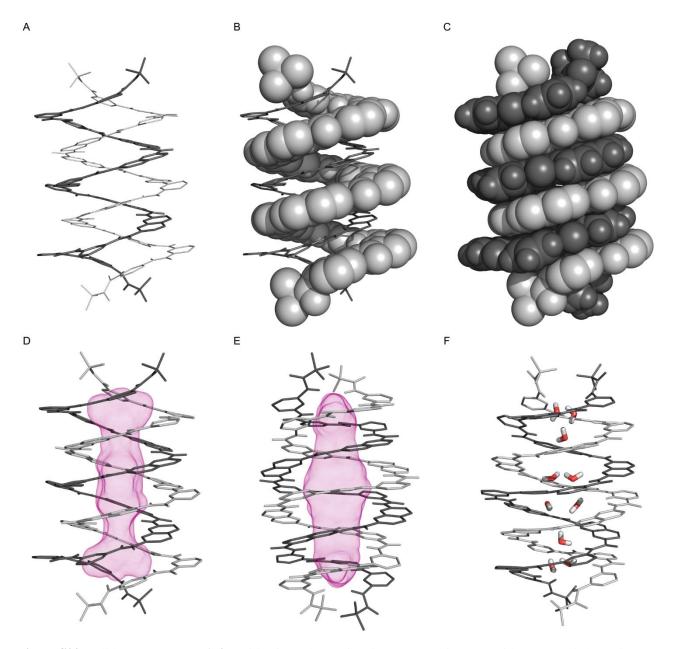



Figure S22. Solid-state structure of 2: side (A) and top (B) views shown in tube representation; side view in CPK representation (C); side view with encapsulated solvent molecules CPK representation (D); Letter and colour codes of the amino acid, diamine, and diacid monomers (E). Isobutoxy side chains and cavity-excluded solvent molecules and counterions are omitted for clarity.

P


Table S9. Crystal data and refinement details for  $2 \supset (\text{DMSO})_2$ 

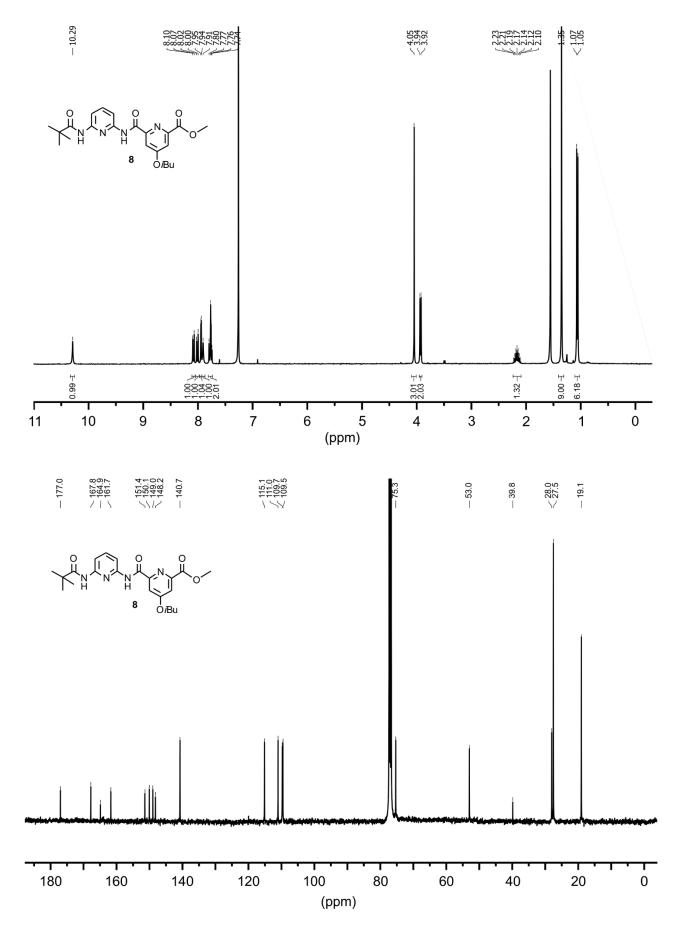
|                                             | 2.2                                                      |
|---------------------------------------------|----------------------------------------------------------|
| Identification code                         | p3n2ppp_a                                                |
| Crystalization solvent                      | DMSO                                                     |
| Empirical formula                           | $C_{134}H_{161}N_{30}O_{25}S_7$                          |
| Formula weight                              | 2816.34                                                  |
| Temperature/K                               | 566.3                                                    |
| Crystal system                              | monoclinic                                               |
| Space group                                 | $P2_1/n$                                                 |
| a/Å                                         | 21.8783(9)                                               |
| b/Å                                         | 17.9272(7)                                               |
| c/Å                                         | 41.317(3)                                                |
| a/°                                         | 90                                                       |
| $\beta/^{\circ}$                            | 91.699(7)                                                |
| γ/°                                         | 90                                                       |
| Volume/Å <sup>3</sup>                       | 16197.9(15)                                              |
| Ζ                                           | 4                                                        |
| $ ho_{calc}g/cm^3$                          | 1.155                                                    |
| $\mu/mm^{-1}$                               | 1.475                                                    |
| <i>F</i> (000)                              | 5948.0                                                   |
| Crystal size/mm <sup>3</sup>                | 0.2 	imes 0.2 	imes 0.2                                  |
| Radiation                                   | $CuK\alpha$ ( $\lambda = 1.54184$ )                      |
| 2 $\Theta$ range for data collection/°      | 6.53 to 117.86                                           |
| Index ranges                                | $-24 \le h \le 22,  -19 \le k \le 19,  -45 \le l \le 45$ |
| Reflections collected                       | 164489                                                   |
| Independent reflections                     | 23231 [ $R_{int} = 0.2054, R_{sigma} = 0.2204$ ]         |
| Data/restraints/parameters                  | 23231/0/1797                                             |
| $Goodness-of-fit on F^2$                    | 0.949                                                    |
| Final R indexes $[I \ge 2\sigma(I)]$        | $R_1=0.1321,wR_2=0.3222$                                 |
| Final R indexes [all data]                  | $R_1=0.2771,wR_2=0.4124$                                 |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.46/-0.34                                               |
| CCDC #                                      | 1967498                                                  |
|                                             |                                                          |

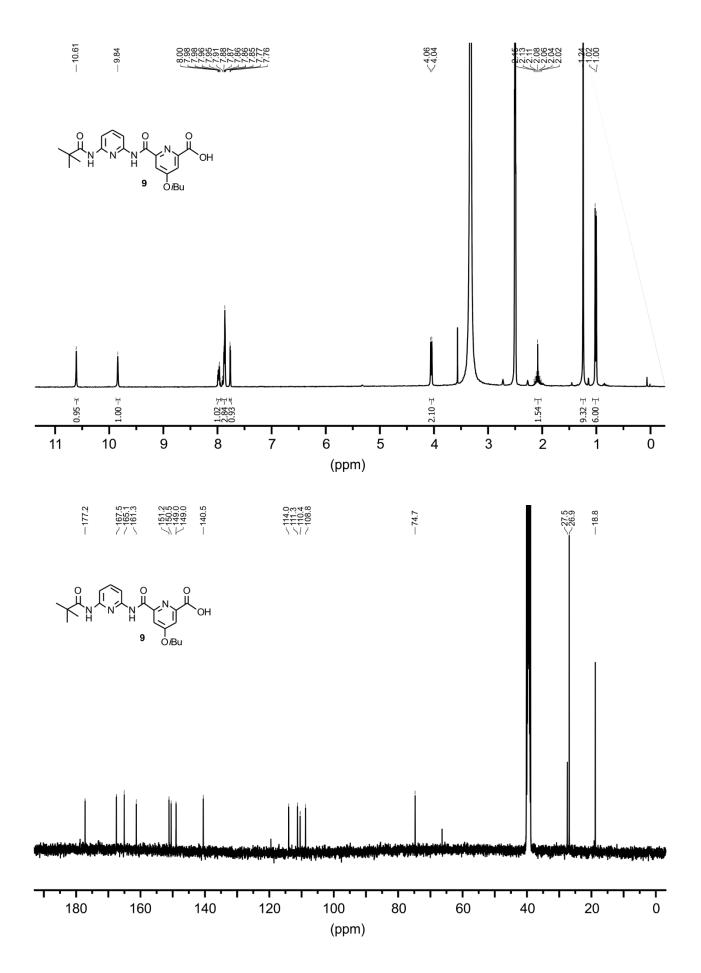
## 5.2 X-Ray crystallographic data for $(2)_2 \supset (H_2O)_{10}$

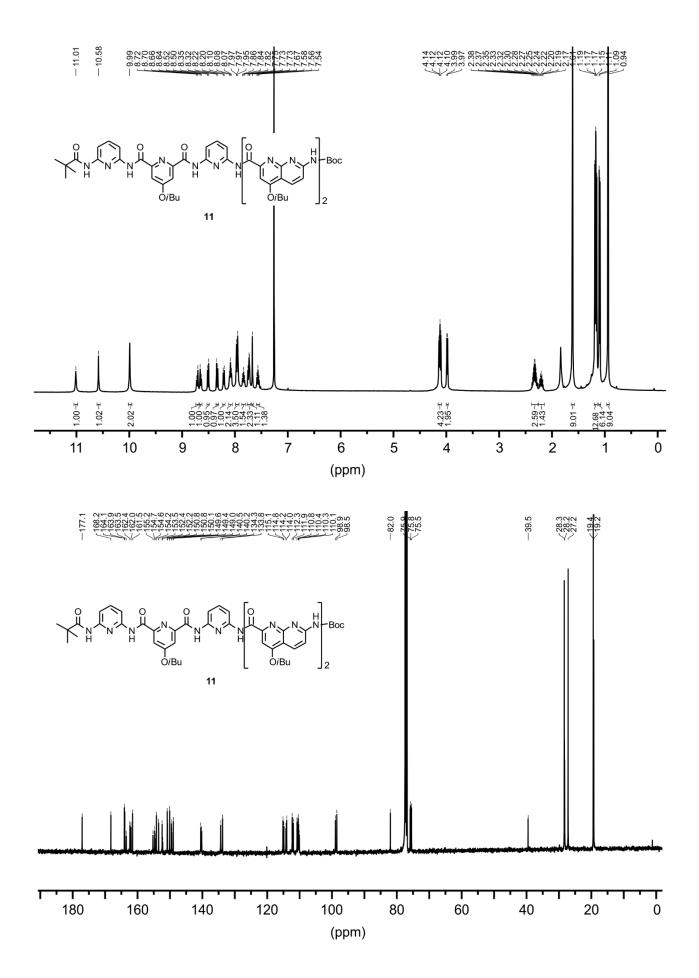
| Identification code                         | 15mquan_0m                                               |
|---------------------------------------------|----------------------------------------------------------|
| Crysalization solvent                       | Diffusion of hexane in CHCl <sub>3</sub>                 |
| Empirical formula                           | $C_{120}H_{131}N_{30}O_{23}$                             |
|                                             |                                                          |
| Formula weight                              | 2361.54                                                  |
| Temperature/K                               | 100                                                      |
| Crystal system                              | triclinic                                                |
| Space group                                 | P-1                                                      |
| a/Å                                         | 21.0683(14)                                              |
| $b/\AA$                                     | 21.4581(13)                                              |
| $c/\AA$                                     | 30.8205(18)                                              |
| α/°                                         | 93.738(4)                                                |
| β/°                                         | 97.601(4)                                                |
| γ/°                                         | 92.328(4)                                                |
| Volume/Å <sup>3</sup>                       | 13764.6(15)                                              |
| Ζ                                           | 4                                                        |
| $\rho_{calc}g/cm^3$                         | 1.140                                                    |
| $\mu/mm^{-1}$                               | 0.644                                                    |
| <i>F(000)</i>                               | 4980.0                                                   |
| Crystal size/mm <sup>3</sup>                | 0.1	imes 0.1	imes 0.08                                   |
| Radiation                                   | $CuK\alpha$ ( $\lambda = 1.54178$ )                      |
| 2 $\Theta$ range for data collection/°      | 4.236 to 101.106                                         |
| Index ranges                                | $-20 \le h \le 21,  -21 \le k \le 15,  -30 \le l \le 29$ |
| Reflections collected                       | 90366                                                    |
| Independent reflections                     | 25996 [ $R_{int} = 0.0805$ , $R_{sigma} = 0.1069$ ]      |
| Data/restraints/parameters                  | 25996/173/3157                                           |
| Goodness-of-fit on $F^2$                    | 1.542                                                    |
| Final R indexes $[I \ge 2\sigma(I)]$        | $R_1 = 0.1559,  wR_2 = 0.3924$                           |
| Final R indexes [all data]                  | $R_1 = 0.2273, wR_2 = 0.4453$                            |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 1.43/-0.50                                               |
| CCDC #                                      | 1967492                                                  |
|                                             |                                                          |

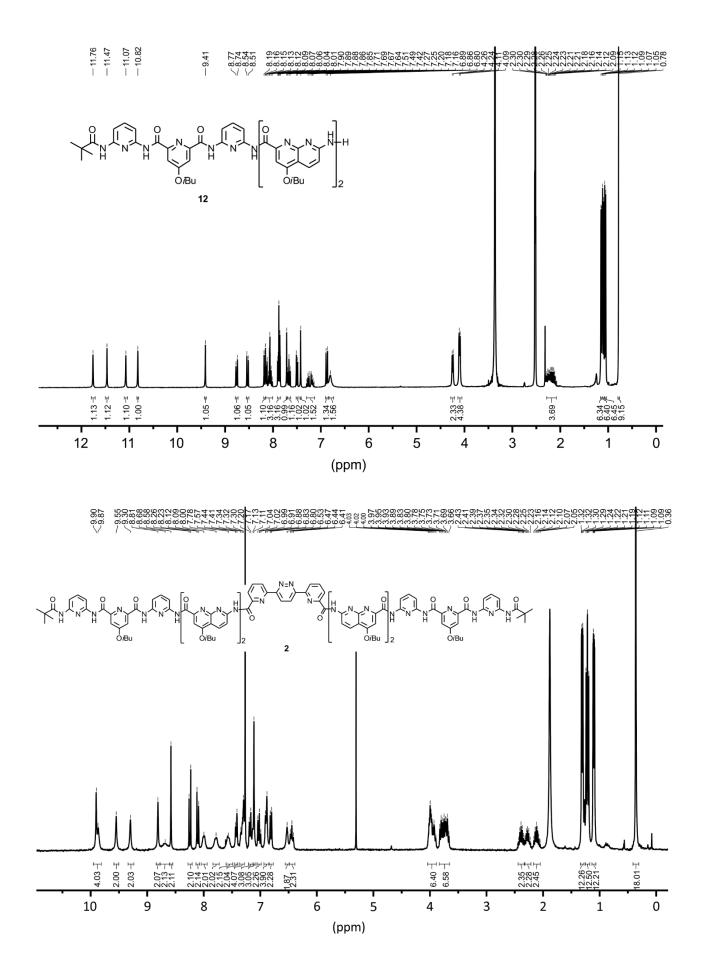
Table S10. Crystal data and refinement details for  $(2)_2$ .

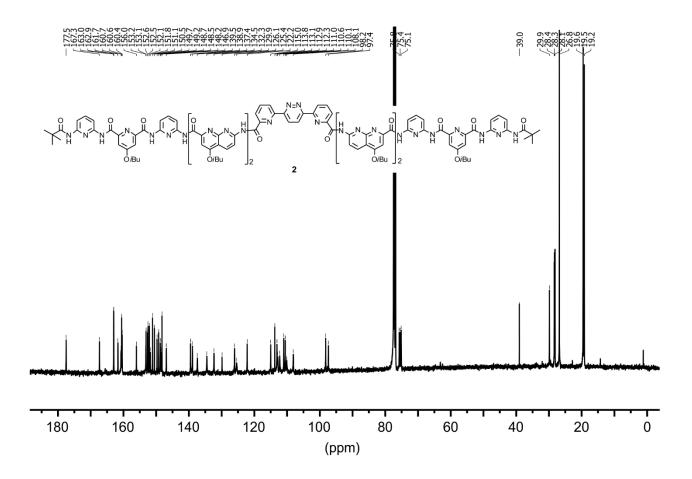



**Figure S23.** Solid-state structure of  $(2)_2$ . Side views shown: in tube representation (A); with one strand shown in CPK representation and the other in tube representation (B); in CPK representation (C). Side views shown in tube representation where the cavity volume of 280 Å<sup>3</sup> is shown as a transparent pink isosurface (D, E). Side view with encapsulated solvent molecules (F). In all representations each strand is colored in a different tone of gray. Side chains were omitted for clarity.


### 5.3 X-Ray crystallographic data for the $(2)_2 \supset (D-3)_2$


| Table S11. Crystal data and refinement | it details for the $(2)_2 \supset (D-3)_2$ complex. |
|----------------------------------------|-----------------------------------------------------|
|----------------------------------------|-----------------------------------------------------|


| Identification code                         | shelxt_a                                                                           |
|---------------------------------------------|------------------------------------------------------------------------------------|
| Crysalization solvent                       | Diffusion of hexane in CHCl <sub>3</sub> /chlorobenzene/DMSO (89:10:1 vol/vol/vol) |
| Empirical formula                           | $C_{536}H_{564}Cl_6N_{120}O_{98}$                                                  |
| Formula weight                              | 10467.74                                                                           |
| Temperature/K                               | 100                                                                                |
| Crystal system                              | monoclinic                                                                         |
| Space group                                 | P2/c                                                                               |
| a/Å                                         | 21.7412(3)                                                                         |
| b/Å                                         | 35.0462(4)                                                                         |
| c/Å                                         | 39.2898(5)                                                                         |
| $\alpha/^{\circ}$                           | 90                                                                                 |
| $\beta^{\prime \circ}$                      | 94.9330(10)                                                                        |
| γ/°                                         | 90                                                                                 |
| Volume/Å <sup>3</sup>                       | 29825.8(7)                                                                         |
| Ζ                                           | 2                                                                                  |
| $\rho_{calc}g/cm^3$                         | 1.166                                                                              |
| $\mu/mm^{-1}$                               | 0.916                                                                              |
| <i>F(000)</i>                               | 11012.0                                                                            |
| Crystal size/mm <sup>3</sup>                | 0.1	imes 0.1	imes 0.1                                                              |
| Radiation                                   | $CuK\alpha (\lambda = 1.54184)$                                                    |
| 2 $\Theta$ range for data collection/°      | 3.384 to 109.414                                                                   |
| Index ranges                                | $-22 \le h \le 22,  -36 \le k \le 36,  -41 \le l \le 41$                           |
| Reflections collected                       | 129058                                                                             |
| Independent reflections                     | 36674 [ $R_{int} = 0.0359$ , $R_{sigma} = 0.0262$ ]                                |
| Data/restraints/parameters                  | 36674/139/3474                                                                     |
| Goodness-of-fit on F <sup>2</sup>           | 1.482                                                                              |
| Final R indexes $[I \ge 2\sigma(I)]$        | $R_1 = 0.1132, wR_2 = 0.3287$                                                      |
| Final R indexes [all data]                  | $R_1 = 0.1233, wR_2 = 0.3425$                                                      |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 1.33/-0.89                                                                         |
| CCDC #                                      | 1967491                                                                            |
|                                             |                                                                                    |


## 6. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of new synthetic compounds











### 7. References

- 1. P. Gans, A. Sabatini, A. Vacca, Ann. Chim. 1999, 89, 45.
- 2. CrysAlisPRO : CrysAlisPRO, Oxford Diffraction /Agilent Technologies UK Ltd, Yarnton, England.
- 3. G. M. Sheldrick, Acta Cryst. 2015, A71, 3
- 4. OLEX2: O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann. J. Appl. Cryst. 2009, 42, 339-341.
- 5. Spek, A. L. Acta Cryst. 2009, D65, 148.
- 6. R. A. Laskowski, J. Mol. Graphics 1995, 13, 323.
- 7. B. Baptiste, J. Zhu, D. Haldar, B. Kauffmann, J-M. Léger, I. Huc Chem. Asian J. 2010, 5, 1364.
- 8. A. B. Eldrup, C. Christensen, G. Haaima, P. E. Nielsen, J. Am. Chem. Soc. 2002, 124, 3254-3262.
- 9. Y. Ferrand, A. M. Kendhale, B. Kauffmann, A. Grélard, C. Marie, V. Blot, M. Pipelier, D. Dubreuil, I. Huc, *J. Am. Chem. Soc.* **2010**, *132*, 7858.