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Parallel Homochiral and Anti-Parallel Heterochiral Hydrogen-
Bonding Interfaces in Multi-Helical Abiotic Foldamers
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Abstract: A hydrogen-bonding interface between helical
aromatic oligoamide foldamers has been designed to promote
the folding of a helix-turn-helix motif with a head-to-tail
arrangement of two helices of opposite handedness. This
design complements an earlier helix-turn-helix motif with
a head-to-head arrangement of two helices of identical
handedness interface. The two motifs were shown to have
comparable stability and were combined in a unimolecular
tetra-helix fold constituting the largest abiotic tertiary structure
to date.

Foldamer research has shown that secondary structures, such
as isolated helices or b-strands, occur in a great variety of
synthetic backbones.[1] In contrast, the design of tertiary folds
is a considerable challenge. This challenge is worth pursuing
because tertiary folding is the level at which sophisticated
functions emerge in proteins and the same may be expected
for foldamers. The way is being paved by impressive progress
in protein design[2] and increasing mastery in programming
binding interfaces between peptidic structures, in particular
within peptide helix bundles.[2b,c,3] For instance, helix bundles
have been reported in peptidomimetics, such as b-peptides[4]

and b-ureas.[5] We have recently introduced the first abiotic
tertiary folds, that is, from backbones that do not relate to
peptides or nucleotides.[6] We used the stable helices formed
by aromatic oligoamides of 8-amino-quinolinecarboxylic
acid[7] (Q in Figure 1) and 6-aminomethylpyridine carboxylic
acid[8] as well-defined modules and introduced hydroxy
groups at precise positions at their periphery (X and Y in

Figure 1) to promote inter-helix hydrogen bonding with
amide carbonyl groups (Figure 2a). Various types of helix
bundling were observed, including parallel trimers and
dimers, and tilted dimers.[6, 9] As opposed to biotic tertiary
folds that form in water and are often driven by hydrophobic
effects, these folds form in organic solvents. All these
assemblies were homochiral, that is, they involved helices
that have the same handedness. Further progress in tertiary
structures design will primarily rest on the orchestration of
interactions between secondary folds, a far-from-trivial
endeavor. Herein we introduce a binding interface between
helices of opposite handedness. Unlike what was recently
shown in heterochiral peptide bundling,[10] we demonstrate
the equivalence of parallel homochiral and anti-parallel
heterochiral abiotic helix association. We also show how the

Figure 1. Structures of units Q, Qh, X, Y, T1, T2, and foldamer
sequences. X and Y are the protected precursors of hydrogen-bonding
units X and Y. Sequences are labelled “a” when protected and “b”
when deprotected. Sequences end with an 8-nitro group at their N-
terminus: this group is noted in the replacement of the NH group at
N-terminal Q units. The T1 unit constitutes an inversion of C!N
sequence polarity; sequences that contain T1 thus have two N termini.
The arrows indicate the hydrogen-bonding patterns between the helices
and point towards the hydrogen-bond acceptor. TMSE= 2-trimethyl-
silylethyl.
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two patterns can be combined within the same tertiary fold
without having to consider the stereochemistry at each unit,
as it would in a peptide.

Turn unit T1 (Figure 1) has been shown to promote
homochiral parallel helix bundling between two identical
helical segments attached at their C-terminus as, for example
in sequence 1 (Figure 1).[6] Molecular modelling was used to
design 1: it allowed us to adjust the positions of hydrogen-
bond donors and led to the replacement of some X units by Y
to avoid possible steric repulsions. A diagram of the helix–
helix interface illustrates how the hydrogen-bond donors and
acceptors may face each other (Figure 2c, left). This diagram
also shows that hydrogen bonding occurs despite the helices
having the same handedness: the slope of the main chain (i.e.
the angle between its tangent and a plane perpendicular to the
axis) should in principle result in some distance between
hydrogen-bond donors and acceptors placed on two helices of
identical handedness. Yet the large helix diameter and the
resulting moderate slope (ca. 1588) are such that hydrogen
bonding takes place. An extension of this observation is that
an anti-parallel heterochiral helix dimer (Figure 2c, right)
should not only give rise to a similar hydrogen-bonding
pattern, but in fact lead to a better match between the
positions of the donors and acceptors because the helical

chains have their tangent parallel to each other at the
interface, that is, their slopes have opposite signs (Fig-
ure 2c).[11] To test this prediction, we designed turn unit T2
and sequence 2 (Figure 1). It should be noted that sequence 2
contains the very same nonameric helix segment as 1 but that
one of the two is now attached to the turn at its N-terminus.

The synthesis of the Fmoc-protected version of T2 is
described in the Supporting Information. In anticipation of
the preparation of long oligomers, we developed a solid-phase
fragment condensation (SPFC) approach (Figure 3a). Frag-

ments A and B were synthesized using previously reported
solid-phase synthesis (SPS) methods.[8c,12] Fragment A was
then cleaved from the resin, purified and coupled to T2-
terminated fragment B still on the resin. To prepare 2a, two
identical fragments were condensed. Using mild resin cleav-
age conditions, oligomer 4 was obtained as a free carboxylic
acid with its side chains protections, and was then converted
into the corresponding methyl ester 2a.

The 1H NMR spectrum of 2a in CDCl3 shows two sets of
signals, suggesting the coexistence of PM and PP/MM
conformers in solution (Figure S1a in the Supporting Infor-
mation), as was previously observed for structures containing
T1.[6, 9] On the contrary, the deprotected sequence 2b shows
one set of sharp NMR signals including for OH resonances
(Figure 3c). The spectrum is similar to that of 1 (Figure 3b)

Figure 2. Hydrogen-bonding patterns involving X (a) and Y (b) units.
Double-headed arrows indicate the different distances between the two
hydrogen bonds for both X and Y units, as represented in (c).
c) Helical net diagrams depicting hydrogen-bond interfaces between
helices. The arrays of six hydrogen-bond donors (yellow) and acceptors
(red) belonging to X (top and bottom) and Y (middle) units are
approximated to belong to two planes facing each other. Hydrogen
bonds are shown as dotted black lines. Blue and pink rods represent
the rims of the helices and are tilted in different directions according
to their P or M helix handedness. A hydrogen-bond array between
parallel homochiral helices (left) can be transformed in an equivalent
array between anti-parallel heterochiral helices (right). In the plane
symmetrical central structure, hydrogen-bond donors (reciprocally
acceptors) face each other and no hydrogen bond forms: inverting
either helix handedness or sequence orientation makes hydrogen
bonding impossible, whereas changing both is a productive trans-
formation. The C2 axis in the diagram at left is best seen in the crystal
structure shown in Figure 4a.

Figure 3. a) Scheme of the synthesis of compounds 4 and 5 via solid-
phase fragment condensation (SPFC). Extract of 1H NMR spectra
(500 MHz, CDCl3) showing the NH and OH resonances of 1[9] (b),
2b (c) and 3b (d). The red dots indicate signals corresponding to OH
protons.
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and indicative of a well-folded helix-turn-helix motif. A
crystal structure of 2b confirmed the formation of the anti-
parallel heterochiral helix dimer (Figure 4b). The resem-
blance of the hydrogen-bonding interface in this structure
with that of 1 (Figure 4a), is striking. Despite the change of
one helix handedness and orientation, the hydrogen-bond
donors and acceptors are found at very similar positions
(Figures S2–S3). The stability of the hydrogen-bonding inter-
faces was then assessed upon monitoring the effect adding
[D6]DMSO into CDCl3 solutions. Because of the rigidity of
the aromatic helices, chelate effects are observed between the
hydrogen-bonding units that results in an all-or-nothing
behavior: the six hydrogen bonds are disrupted all at once
through a small change of DMSO concentration. Remark-
ably, this transition occurred with identical amounts of
DMSO (ca. 20% vol/vol, Figures S4–S7) for 1 and 2b,
showing comparable strengths of the parallel homochiral
and anti-parallel heterochiral hydrogen-bonding interfaces.

Differences from peptide helical bundles should be noted:
in peptides, bundling is mostly known between a-helices of
identical handedness which, to best match at their binding
interfaces, generally coil around one another. Studies on
heterochiral peptide helix bundling[10] and in particular some
recent work by Gellman et al. ,[10a,b] show that homochiral and

heterochiral peptide helix interfaces are not equivalent,
notably because coil-coiling is not conducive of better
complementarity in heterochiral bundles. In contrast, the
rigidity of the aromatic helices hampers coiling, at least over
short distances, and strictly parallel arrangements form when
mediated by turn units, such as T1 and T2. However, aromatic
helices may slightly change their local curvature, so as to
optimize inter-helix interactions: helix curvature in the
structures of 1 and 2b is not rigorously constant and identical
to that of relaxed helices not involved in bundling.

In compounds 1 and 2b, helix handedness control is
relative, not absolute, and guided only by strand orientation
as imposed by the turn unit, and by hydrogen-bonding
complementarity. This should in principle allow for the
combination of both parallel-homochiral and anti-parallel-
heterochiral motifs in the same tertiary structure without
having to consider the nature of stereogenic centers at each
unit as it would in peptides. We challenged this possibility
through the design of sequence 3b (Figure 1). As shown in
Figure 4c,d, 3b is expected to fold in a sequence of four
contiguous helices having either identical or opposite hand-
edness depending on whether they are separated by T1 or T2,
with the central YXXQhY helical segments each bearing two
independent hydrogen-bonding interfaces, one homochiral,

Figure 4. Crystal structures of compounds 1[6] (a) and 2b (b). Front view (c) and top view (d) of energy-minimized molecular model of 3b.
Cartoons indicate helix handedness, C and N-termini. Side chains of Q, Qh, T1, and T2, included solvent molecules and most hydrogen atoms
have been omitted for clarity. For crystallographic details and the CCDC number see the Supporting Information.
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and one heterochiral. In the design of 3b, we made use of
helices of different length to avoid creating an extended
aromatic surface that might promote aggregation and reduce
solubility. Similarly, we introduced Qh units with a longer
branched alkyl chain inside the sequence to promote sol-
ubility (Figure 1). Oligomer 3a was synthesized combining
SPFC (Figure 3a) and solution-phase synthesis for the final
coupling of T1 with 5. The 1H NMR spectrum of protected
compound 3a was complex due to the presence of multiple
turn units (Figure S1b) and thus of different conformational
stereoisomers (PMMP, PMMM, MMMM, PMPM, PMPP,
MMPP and their enantiomers). After removal of the side
chain protecting groups, a sharp spectrum with only one set of
signals was observed for 3b (Figure 3d). Even though an
unambiguous structure elucidation could not be achieved in
solution or in the solid state, these observations altogether
suggest that 3b is present in solution in a well-defined folded
conformation.

In conclusion, we have introduced a new well-defined
abiotic helix–helix hydrogen-bonding interface and showed
that tertiary structures combining different interfaces can be
designed, resulting in predictable helix-turn-helix structures
composed of helices of different handedness and orientation,
a pattern difficult to reach with simple peptides. We are
currently expanding this work to interfaces between tilted,
that is, non-parallel, helix multimers and will report our
progress in due course.
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is either in front of or behind the planar helical net diagrams
shown. Complementarity also exists with respect to this posi-
tioning: when one donor lies below the plane shown in the
scheme, the acceptor to which it hydrogen bonds lies above the
other plane. The transformation that consists in inverting both
the handedness and the C!N orientation of a helix also
preserves the positionning of the acceptors and donors above or
below the planes shown in the schemes.
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