Role of lactam vs. lactim tautomers in 2(1H)-pyridone catalysis of aromatic nucleophilic substitution

Anne Loppinet-Serani, Florence Charbonnier,* Christian Rolando † and Ivan Huc ‡

Ecole Normale Supérieure, Département de Chimie, URA 1679 du CNRS, Processus d’Activation Moléculaire, 24 rue Lhomond, 75231 Paris Cedex 05, France

3-Ethylaminocarbonyl-2(1H)-pyridone 1 and 3-ethoxycarbonyl-2(1H)-pyridone 2 have been synthesised and tested as catalysts for the aromatic nucleophilic substitution of fluoride by piperidine in 2-fluoro-5-nitrobenzonitrile. A kinetic model which takes into account the dimerisation of the catalysts has been developed, which allows a quantitative analysis of measured data. 3-Ethylaminocarbonyl-2(1H)-pyridone 1 exists exclusively as a lactam tautomer, either monomeric or dimeric but 3-ethoxycarbonyl-2(1H)-pyridone 2 exists as a lactim monomer, whereas its dimer exists in the lactam form. Despite such differences, these two compounds exhibit similar catalytic efficiencies for the reaction studied, suggesting that lactim and lactam tautomers have comparable efficiencies in tautomeric catalysis.

Introduction

Since the discovery in 1952 of the unusual catalytic efficiency of 2(1H)-pyridone for 2,3,4,6-tetra-OMe-glucopyranose anomeric epimerisation to the β-isomer, examples of bifunctional catalytic effects have been reported for a variety of chemical reactions. The attention devoted to these studies stems from the analogies between bifunctional catalysts and enzyme mediated processes. All these bifunctional catalysts are tautomeric molecules or ions, usually both weak acids and weak bases. They share a common ability to bind to a reaction intermediate or transition state and to exchange simultaneously two protons while interconverting between tautomers during the catalytic process [reaction (1)]. However, whether these features are responsible for the catalytic efficiency is still an assumption and mechanistic studies have not yet been fully conclusive.

To elucidate the role of tautomerism in these reactions, we assessed the catalytic power of lactam vs. lactim tautomers of 2(1H)-pyridine in nucleophilic aromatic substitution. To this end, substituted derivatives of 2(1H)-pyridine, 3-ethylaminocarbonyl-2(1H)-pyridone 1 and 3-ethoxycarbonyl-2(1H)-pyridone 2, were prepared. As shown by NMR and UV spectroscopy, the tautomeric equilibria of 1 and 2 in CHCl₃ are considerably different although their structures are similar. In 1, an intramolecular hydrogen bond involving the amide N–H stabilises the lactam form of the heterocycle, thus allowing an equilibrium between a lactam dimer and a lactam monomer. Intramolecular hydrogen bonding in 2 involves the ester carbonyl group and stabilises a lactim monomer. These two compounds could then be considered as models of lactam and lactim monomeric forms, respectively, of 2(1H)-pyridone. The catalytic efficiency of 1 and 2 in the substitution of 2-fluoro-5-nitrobenzonitrile by a secondary amine was determined and correlated to their tautomeric properties.

The name ‘2-hydroxypyridine’ will be used to designate this compound or any derivative whatever tautomeric forms, either monomeric or dimeric, may exist in solution.

Results and discussion

Synthesis

Amide 1 and ester 2 were prepared from 2-hydroxynicotinic acid via the corresponding acid chloride. Because they do not dimerise or tautomerise, the N-methyl 1a and 2a, and O-methyl derivatives 1b and 2b were synthesised as reference compounds for the spectroscopic studies.

Alkylation of 1 and 2 with methyl iodide in basic media yielded mixtures of N-methyl and O-methyl derivatives that could be separated by column chromatography. The regioselectivity could be directed towards either N-alkylation or O-alkylation, respectively, by the use of K₂CO₃ or Ag₂CO₃ as the basic reagent. The ratios of N-alkylated and O-alkylated products as determined by ¹H NMR analysis on the crude product were as shown below.
Tautomerism and dimerisation

Interconversion of tautomers, solvation, and dimerisation of 2(1H)-pyridone result in a number of equilibria (Scheme 1). Both calculation and experiment have shown the standard enthalpies of formation of 2(1H)-pyridone and 2-hydroxy-pyridine to be similar. In solution, the lactam–lactim ratio depends on the polarity of the solvent. The lactim tautomer is a better hydrogen bond donor and acceptor and predominates as a solvated monomer in polar or protic media. In apolar solvents, the tautomeric equilibrium is influenced by dimerisation. Due to its polar nature, the lactam tautomer exists predominantly as a hydrogen-bonded dimer in apolar media. On the other hand, the less polar lactim tautomer is also found as a monomer in apolar media. The proton exchange involved in the tautomerism occurs within a dimer in apolar media, or between a monomer and the solvent in protic media.

The co-existence of both tautomers for ester 2 in CHCl₃ was demonstrated by the presence of two absorbance maxima in its UV spectrum. Each maximum is the sum of contributions from absorbances of the monomers and/or dimers of each tautomeric species. Comparison with UV spectra of the N-methyl and O-methyl derivatives allowed the assignment of lactim (300 nm) and lactam (330 nm) chromophores. Upon addition of MeOH (Fig. 1A), the lactim absorbance decreases and the lactam absorbance increases through the formation (2-lactam·MeOHₙ) complexes. The tautomerism is also temperature-dependent (Fig. 1B). The lactam absorbance increases upon cooling while the lactim absorbance decreases. This is consistent with a differential stabilisation of the dimeric lactam and monomeric lactim. The monomer–dimer equilibrium shifts with temperature or concentration, which results in a shift of the tautomeric equilibrium. As previously suggested for other 3-carboxy substituted 2(1H)-pyridones, the formation of an intramolecular hydrogen bond involving the ester carbonyl group (Fig. 1) stabilizes the lactim monomer.

In contrast, the UV spectrum of amide 1 under the same conditions consists of essentially one maximum at 320 nm. Cooling, heating, or addition of MeOH induced minimal changes (Figs. 1C and 1D). These results suggest that only the lactam is present and that its UV spectrum does not change significantly upon dimerisation or complexation with MeOH. We propose that the relative stabilisation of the lactam is due to intramolecular-hydrogen bonding between the lactam carbonyl group and the amide N–H bond. This arrangement seemingly

Scheme 1 Tautomerism and dimerisation of 2-pyridones. Hetero dimers between lactim and lactam tautomers are not to be excluded.
Fig. 2 1H NMR chemical shifts (CDCl3, 23 °C) of H4 (▲), H5 (●) and H6 (●) signals for amide 1 and H4 (●), H5 (●) and H6 (●) for ester 2 at different concentrations. For comparison, the concentration independent shifts of the same signals for the N-methyl and O-methyl derivatives are represented above and below respectively.

Forms despite the possibility of a hydrogen bond between the lactim hydroxy group and the amide carbonyl.

Significant changes in the 1H NMR spectra of 1 and 2 were observed upon varying concentration or temperature (shifts of up to 0.6 ppm for aromatic protons and up to 4 ppm for protomeric protons). These changes were not observed for methylated compounds 1a, 1b, 2a and 2b. As shown in Fig. 2, at a concentration of 1 mol L−1, the aromatic signals of ester 2 almost match those of its N-methyl analogue 2a. These signals shift toward those of the O-methyl derivative 2b upon dilution. Again, these results support the hypothesis of a monomer-dimer equilibrium in which the lactam tautomer resides predominantly in dimers and the lactim tautomer in monomers [equilibria (2) and (3)]. Dilution causes dissociation of dimers and therefore a shift in the protomeric equilibrium toward the lactim tautomer.

On the other hand, no concentration does the NMR spectrum of 1 match that of its O-methyl derivative. Upon dilution, H5 and H6 signals shift upfield for amide 1 whilst they shift downfield for ester 2 (Fig. 2).

These results are consistent with UV data and support the absence of the lactim tautomer for 3-ethylenaminocarbonyl-2(1H)-pyridone 1 and a simple equilibrium between lactam monomers and lactam dimers. While the large shifts of H5 and H6 signals for the 3-ethoxy carbonyl-2(1H)-pyridone 2 are best explained by a lactim–lactam interconversion, the smaller shifts observed for amide 1 simply reflect the deshielding effect of the proximal carbonyl group in lactam dimers (Scheme 2). The 1H NMR analysis also provides data supporting the formation of an intramolecular hydrogen bond between the lactam carbonyl group and the amide N–H bond of amide 1: (i) the chemical shift of the amide N–H in CDCl3 is relatively far downfield (9.55 ppm) and concentration-independent; (ii) the deshielding effect of the carbonyl group in position 3 on the H4 signal is stronger for amide 1 (δH 8.6) than for ester 2 (δH 8.2) (Scheme 2).

Chemical shifts of protomeric protons of amide 1 and ester 2 are also concentration-dependent. The observed data fit a binding isotherm calculated for a simple dimerisation equilibrium,

which results in a sigmoidal curve when the concentration is represented on a logarithmic scale (Fig. 3).

The best fit was obtained for a dimerisation constant Kdim of 280 m−1 (estimated error margin ±15%) for amide 1, and of 1335 m−1 (±15%) for ester 2, defined as follows: 2 [monomer]total = [dimer]total + [monomer]total. The discrepancy between these values may come from repulsive secondary interactions between the lactam N–H bond and the amide N–H bond in dimers of 1. Also, the fact that the lactam oxygen of 1 partially satisfies its electrostatic demand to yield an intramolecular hydrogen bond might decrease its ability to form a second hydrogen bond with its remaining lone pair.

In conclusion, equilibria represented in Scheme 2 are consistent with the observed protomeric and dimerisation properties of amide 1 and ester 2. The next step is to evaluate how these differences affect the catalytic power of these compounds in aromatic nucleophilic substitutions.

Catalysis

The efficiency of pyridones for catalysing aromatic nucleophilic substitutions was first demonstrated by Pietra and Vitali using 2,4-dintrofluorobenzene and piperidine as reagents.27 As shown in Scheme 3, the proposed mechanism involves complexation of the zwitterionic intermediate by pyridone. This complex, where the oxo group and the tautomeric hydroxy of pyridone are hydrogen bonded respectively to the ammonium proton and to the electrophilic fluorine atom, gets transformed into products through a cyclic transition state, by concerted departure of ammonium proton and fluoride anion from the intermediate. This process leaves the catalyst as a tautomeric hydroxy form. We studied the catalytic efficiency of amide 1, ester 2 and 2(1H)-pyridone itself in the substitution of fluoride by piperidine in 2-fluoro-5-nitrobenzonitrile 3. The cyano compound was preferred over the trifluoromethyl analogue whose reaction with piperidine is very slow.14 Also the nitro derivative was avoided to prevent complications due to intramolecular hydrogen bonding between the nitro group and the ammonium proton in the intermediate.14

Since the tetrahedral intermediate may collapse to form the products or the starting reagents (Scheme 3),14 the apparent rate constant can be expressed by eqn. (4), where k1 and k−1 are the

![Scheme 2](image) Dimerisation and tautomerism of amide 1 and ester 2. Arrows represent some of the deshielding effects observed in the 1H NMR spectra.
Table 1 Apparent second order rate constants \(k_{app}\) for the piperidino-substitution of 2-fluoro-5-nitrobenzonitrile 3 in CHCl\(_3\) at 25 °C in presence of 2(1H)-pyridone, 3-ethylaminocarbonyl-2(1H)-pyridone 1 or ethoxycarbonyl-2(1H)-pyridone 2.

| [Pyridone] in mol l\(^{-1}\) | \(k_{app}\) in mol l\(^{-1}\) s\(^{-1}\) | \(|\Theta|\) in mol l\(^{-1}\) | \(k_{app}\) in mol l\(^{-1}\) s\(^{-1}\) | \(2|\Theta|\) in mol l\(^{-1}\) |
|-----------------------------|------------------|------------------|------------------|------------------|
| 5.70 \times 10^-5 | 4.03 \times 10^-3 | 1.01 \times 10^-5 | 4.22 \times 10^-3 | 1.28 \times 10^-5 |
| 1.14 \times 10^-4 | 3.74 \times 10^-3 | 1.01 \times 10^-4 | 4.16 \times 10^-3 | 1.28 \times 10^-4 |
| 5.70 \times 10^-4 | 4.99 \times 10^-3 | 5.05 \times 10^-4 | 4.68 \times 10^-3 | 1.03 \times 10^-3 |
| 1.14 \times 10^-3 | 5.43 \times 10^-3 | 1.01 \times 10^{-5} | 5.86 \times 10^{-3} | 2.26 \times 10^{-3} |
| 5.70 \times 10^-3 | 7.70 \times 10^{-3} | 5.05 \times 10^{-3} | 6.72 \times 10^{-3} | 5.13 \times 10^{-3} |
| 1.14 \times 10^-2 | 9.05 \times 10^{-3} | 1.01 \times 10^{-2} | 1.09 \times 10^{-2} | 1.01 \times 10^{-2} |
| 4.52 \times 10^-2 | 1.69 \times 10^{-2} | 5.05 \times 10^{-2} | 1.03 \times 10^{-2} | 6.08 \times 10^{-2} |
| 8.33 \times 10^-2 | 2.35 \times 10^{-2} | 1.01 \times 10^{-1} | 1.40 \times 10^{-2} | 1.14 \times 10^{-1} |
| 1.13 \times 10^-1 | 6.24 \times 10^{-2} | 1.14 \times 10^{-1} | 5.70 \times 10^{-2} | 1.14 \times 10^{-1} |

* \([\text{Pyridine}]=1.62 \times 10^{-3}\ \text{mol l}^{-1} ; \ [\text{2-fluoro-5-nitrobenzonitrile}]=8.93 \times 10^{-5}\ \text{mol l}^{-1} ; \ \text{NO} 2 \text{-pyridone, 3-ethylaminocarbonyl-2(1H)-pyridone 1 or ethoxycarbonyl-2(1H)-pyridone 2}.

Table 2 Non-linear least-square regression analysis of measured apparent second order rate constants \(k_{app}\) using the eqn. (6).

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>(K_{dim}K_{app}^{\pm} s_j^*)</th>
<th>(k_{app}K_{dim}^{\pm} s_j^*)</th>
<th>(k_{app}K_{dim}^{\pm} s_j^*)</th>
<th>(k_{app}K_{dim}^{\pm} s_j^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2(1H)-Pyridone</td>
<td>2880 \pm 115</td>
<td>3.23 \pm 0.37</td>
<td>5.27 \pm 0.37</td>
<td>1631 \pm 270</td>
</tr>
<tr>
<td>Amide I</td>
<td>280 \pm 12</td>
<td>4.12 \pm 0.03</td>
<td>0.781 \pm 0.03</td>
<td>190 \pm 10</td>
</tr>
<tr>
<td>Ester 2</td>
<td>1335 \pm 217</td>
<td>4.23 \pm 0.03</td>
<td>1.06 \pm 0.16</td>
<td>250 \pm 30</td>
</tr>
</tbody>
</table>

* \(K_{app}\) values were measured by NMR dilution experiments; \(s_j^*\) standard deviation of \(K_{app}\) as determined by the curve fitting program. \(s_j^\circ\) standard deviation of \(k_{app}K_{dim}^{\pm} s_j^\circ\) standard deviation of \(k_{app}K_{dim}^{\pm} s_j^\circ\) and \(s_j^\circ\) the sum of the standard deviation determined by the curve fitting program, and of the deviation due to the error on \(K_{dim}\).

Scheme 3 Mechanism of a nucleophilic aromatic substitution. The breakdown of the intermediate into products can either take place directly \((k_3)\) or be catalysed by the pyridone \((k_4\text{[Cat]})\).

\[
k_{app} = k_4(k_2 + k_4\text{[Cat]})(k_{k-1}+k_2+k_4\text{[Cat]}) \quad \text{(4)}
\]

rate constants relative to the formation of the zwitterionic intermediate, respectively for forward and backward reactions, and \(k_2\) and \(k_4\) are the rate constants relative to the formation of products, respectively, via the non-catalysed and the catalysed routes.

In chloroform \(k_{k-1} \gg k_2 + k_4\text{[Cat]}\), the second step is then rate-limiting, and the apparent rate constant is a linear function of the concentration of catalysts\(^\text{17}\) [eqn. (5)].

\[
k_{app} = k_4k_{k-1} + \text{[Cat]}k_4k_{k-1} \quad \text{(5)}
\]

In Table 1 are reported the measured \(k_{app}\) values at different concentrations of 1, 2 and 2(1H)-pyridone. These values do increase with the total concentration of catalyst, but less than predicted by the linear relationship mentioned above (Fig. 4).

Fig. 4 Apparent second order rate constants as a function of the total concentration of 3-ethylaminocarbonyl-2(1H)-pyridone 1. Data fitted according to the proposed model are displayed as a solid line.

The variations of \(k_{app}\) as a function of the concentration in monomeric catalyst can also be estimated, the concentration in monomers being expressed as a function of the total concentration in catalyst \([\text{Cat}]\) and the dimerisation equilibrium constant \(K_{dim}\) [eqn. (6)].

\[
K_{dim} = [\text{monomeric Cat}] + 2[\text{dimeric Cat}] \quad \text{(6)}
\]

The plot thus obtained is a straight line. Thus, the measured \(k_{app}\) values were fitted to eqn. (7) by non-linear least square regression analysis, using the \(K_{dim}\) values obtained from the analysis of the data measured by NMR spectroscopy in dilution experiments. The calculated values thus obtained for \(k_4\text{[Cat]}k_{k-1}\) and \(K_{dim}\) are reported in Table 2. The reasonable homogeneity of the values calculated for \(k_4\text{[Cat]}k_{k-1}\) (uncatalysed pathway) indicate that although simple, the model gives a reliable description of the reaction. The deviation observed in the variations of \(k_{app}\) with the total concentration of catalyze can thus be explained by the dimerisation of the catalyst that takes place at higher concentrations, leaving pyridones as associated...
species less available for catalysis. Pyridone dimers do not participate in catalysis; only monomers are effective. The efficiency of the catalysts tested is best expressed by k_2/k_1. It varies from 1 for 1 and 2 and to 1600-fold for 2(1H)-pyridone. The small difference between the catalytic efficiencies of 1 and 2 sharply contrasts with their largely different behaviours toward dimensioning and tautomerism noted from the NMR and UV studies. Ester 2 has a better hydrogen bonding ability (a larger $K_{\text{H,HB}}$ value) than 1, but this does not significantly enhance its catalytic power. Furthermore, the fact that 1 is exclusively lactam, whilst 2 is predominantly lactim, in the monomeric form does not affect the catalysis either. Each catalytic step involves interconversion of tautomers, but all the steps involved in the interconversion between tautomeric forms are faster than the aromatic nucleophilic substitution and the more stable tautomer is quickly regenerated. Unless hydrogen bonding ability and tautomerism compensate for each other, it appears that these factors are not essential for catalytic efficiency.

Both 3-ethylaminocarbonyl-2(1H)-pyridone 1 and 3-ethoxycarbonyl-2(1H)-pyridone 2 are both less effective than 2(1H)-pyridone. A possible explanation may be that intramolecular hydrogen bonding in monomers for both amide and ester tautomerism noted from the NMR and UV studies. Ester 2 tends to increase their basicity down to submillimolar concentrations. Spectra were recorded with increasing acquisition times for dilute samples. Non-linear least square regression curve fitting was performed using the Axum software from MathSoft (Bagshot, UK) for determining association constants.

Kinetic measurements

The kinetics were followed spectrophotometrically at $\lambda_{\text{max}} = 370$ nm. At this wavelength, the molar extinction coefficient of 2-fluoro-5-nitrobenzonitrile is $\epsilon_{\text{m, max}} = 15,700$ $1 \text{ mol}^{-1} \text{ cm}^{-1}$. Concentrations of substrate, amine and catalyst are reported in the tables. The kinetic runs were recorded during one hour in a thermostatted cell at 25°C. The k_{app} values were calculated for each concentration. Least-square analyses performed with the Axum software from MathSoft company (Bagshot, UK) allowed catalytic efficiencies to be calculated.

Syntheses

3-Ethylaminocarbonyl-2(1H)-pyridone 1. A mixture of 2-hydroxynicotinic acid (1 g, 7.2 mmol) and SOCl$_2$ (6 ml) was heated to reflux during 15 min. Excess thionyl chloride was then removed and the residual solid was dried under vacuum. The product was extracted with CH$_2$Cl$_2$ (6 ml) was synthesised from acetone–pentane (90% w/w) and SOCl$_2$ (6 ml) was refluxed for 15 min. Excess thionyl chloride was then removed and the residual solid was dried under vacuum. The acid chloride was dissolved in anhydrous THF (10 ml), and added dropwise to a solution of EtNH$_2$ (4 mmol) in anhydrous THF (10 ml) at -78°C. The mixture was then stirred at room temperature during 12 h. Volatiles were carefully evaporated and the residue was suspended in aqueous saturated NaHCO$_3$. The product was extracted with CH$_2$Cl$_2$ (3 × 10 ml). The organic layers were combined, washed with water, dried over MgSO$_4$ and evaporated to dryness. The product was recrystallised from acetone–pentane (970 mg, 81%), mp 158°C; δ_{H} (250 MHz, CDCl$_3$) 9.56 (1H, br, s), 8.67 (1H, dd, $J_{\text{H,Ja}} = 7.2$, 2.2), 7.59 (1H, dd, $J_{\text{H,Ja}} = 6.6$, 2.2), 6.58 (1H, dd, $J_{\text{H,Ja}} = 7.6, 2.2$), 6.25 (1H, dd, $J_{\text{H,Ja}} = 7.6, 2.2$), 6.6 (1H, s), 4.18 (2H, q, $J_{\text{CH,CH$_2$}} = 7.0$); 1H, 1.24 (3H, t, $J_{\text{CH,CH$_2$}} = 7.0$); $\epsilon_{\text{m, max}}$(KBr)cm$^{-1}$ 3165, 3077, 3017, 2970, 2936, 2881, 1667, 1548, 1470.

3-Ethoxycarbonyl-2(1H)-pyridone 2. Ethanol was carefully added to the acid chloride prepared as above and the mixture was stirred at room temperature during 12 h. Solvent was evaporated to dryness. The off-white crystalline residue was sublimed, and recrystallised from acetone–hexane to yield the ester as white needles (840 mg, 70%), mp 139°C; δ_{H} (250 MHz, CDCl$_3$) 9.05 (1H, br, s), 8.67 (1H, dd, $J_{\text{H,Ja}} = 7.1, 2.3$), 7.64 (1H, dd, $J_{\text{H,Ja}} = 7.6, 2.3$), 6.25 (1H, dd, $J_{\text{H,Ja}} = 7.6, 2.2$), 4.18 (2H, q, $J_{\text{CH,CH$_2$}} = 7.0$), 1.24 (3H, t, $J_{\text{CH,CH$_2$}} = 7.0$); $\epsilon_{\text{m, max}}$(KBr)cm$^{-1}$ 3077, 3017, 2970, 2936, 2881, 1667, 1548, 1470.

General methylation procedure. A mixture of the starting 2-hydroxyypyridine (1 mmol) and K₂CO₃ (or Ag₂CO₃) (0.5 g) was suspended in hexane (20 ml). Methyl iodide (2 ml) was added and the mixture was stirred at room temperature during 12 h, then heated to reflux during 1 h. After cooling, CH₂Cl₂ (20 ml) was added and the mixture was stirred vigorously. Remaining solids were filtered and the filtrate was evaporated. The residue was chromatographed on silica gel, eluting with Et₂O to yield the desired compound.

3-Ethylaminocarbonyl-1-methyl-2(1H)-pyridone 1a. — δ 2b (250 MHz, CDCl₃) 9.74 (1H, br s), 8.55 (1H, dd, Ja 7.2, Jb 2.2), 7.52 (1H, dd, Ja 6.6, Jb 2.2), 6.42 (1H, dd, Ja = Jb 6.9), 3.65 (3H, s), 3.51 (2H, dq, Ja = Jb 7.3), 1.25 (3H, t, J 7.3).

3-Ethylaminocarbonyl-2-methoxyypyridine 1b. — δ 2b (250 MHz, CDCl₃) 8.51 (1H, dd, Ja 7.5, Jb 2.0), 8.24 (1H, dd, Ja 4.9, Jb 2.1), 7.89 (1H, br s), 7.04 (1H, dd, Ja 7.5, Jb 4.9), 4.09 (3H, s), 3.48 (2H, dq, Ja = Jb 7.3), 1.25 (3H, t, J 7.3).

3-Ethoxycarbonyl-1-methyl-2(1H)-pyridone 2a. — δ 2b (250 MHz, CDCl₃) 8.13 (1H, dd, Ja 7.2, Jb 2.2), 7.55 (1H, dd, Ja 6.6, Jb 2.2), 6.22 (1H, dd, Ja = Jb 6.9), 4.36 (2H, q, J 7.2), 3.59 (3H, s), 1.38 (3H, t, J 7.2).

3-Ethoxycarbonyl-2-methoxyypyridine 2b. — δ 2b (250 MHz, CDCl₃) 8.30 (1H, dd, Ja 4.9, Jb 2.0), 8.15 (1H, dd, Ja 7.5, Jb 2.0), 6.94 (1H, dd, Ja 7.5, Jb 4.9), 4.36 (2H, q, J 7.2), 4.04 (3H, s), 1.38 (3H, t, J 7.2).

References