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Nucleic acid sequences that comprise tandem guanine (G)
nucleotides are predisposed to forming four stranded structures
called G-quadruplexésit was recognized that the DNA sequences
found at the telomeres could form G-quadruplexes in VifRecent
studies have shown that natural proteins can promote quadruplex
formation at the telomeres under the apparent control of a cell cycle
dependent phosphorylation event, providing strong evidence for a
functional role for telomeric DNA quadruplexéS&mall molecules
that selectively bind and stabilize the telomeric quadruplex can
disrupt telomere function in ceflend are currently under investiga-
tion as potential anticancer agehis-Quadruplex sequence motifs
are prevalent in the genofhand are particularly enriched in gene
promoters. This suggests that G-quadruplex formation may be
linked to gene transcription, and that G-quadruplex stabilizing
ligands may interfere with gene expressfohnumber of promoter
qguadruplexes associated with protooncogenes have been identified,
which include c-myé, c-kit,° and Bcl-21° It has recently been ?‘
suggested that G-quadruplexes in theuBtranslated regions of W =)
mRNAs modulate translation and may provide yet another class Jg‘j-'k 3 ,
of targets for small molecule interventiéhThere is thus consider-
able interest in the development of ligands that bind G-quadruplex Figure 1. Formulas of cationic oligomers-3, top view and side view of
sequence motifs. Herein, we report the tight and selective binding models ofstlilelr_ confoymatlon based on crystal structures of lipophilic

SR . . analogued31 Side chains have been replaced by yellow spheres.
of cationic trimeric macrocyclé and helically folded tetrame3
to quadruplex DNA (Figure 1).

Reported G-quadruplex ligands generally comprise a planar
sr-rich pharmacophore, presumed to bind to guanine tetrads, with
appended side chains to enhance the binding interattitve
reasoned that oligoamides of 8-amino-2-quinoline carboxylic acid
might be good candidates for G-quadruplex binding owing to their
ability to adopt very stable, planar, bent, or helically folded
conformations in the solid state and in solutiéA? including in
protic solvents® Furthermore, their ability to penetrate cells, their
resistance to protease degradation, and low toxicity make them
attractive candidates for chemical biology and cell-based stélies.
Structural studies on lipophilic derivativéssupport that dime
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G-quadruplex (h-telo) and also one of the c-kit promoter
G-quadruplexée® (c-kit), in comparison to a duplex DNA standard
(dup). Telomestatind)!8is one of the strongest quadruplex ligands
reported and was used as a reference for comparison. Table 1 and
Figure 2 summarize the quadruplex melting data.

It was evident thatl stabilized both the human telomeric and
the c-kit G-quadruplexes even more strongly than the potent natural
product telomestatingj and without any detectable stabilization
of duplex DNA, indicative of quadruplex versus duplex selectivity.
To our surprise, the helical tetram@was also a moderately strong
quadruplex stabilizing ligand with apparent selectivity relative to
duplex DNA. The acyclic dimer2 was, in contrast, a poor

\foﬁld Edolp t abplarlwar crescsrtl;[]-hr? f[:orrgortr]natll((j)n, t.h?t cyclic tr|mer quadruplex ligand. We propose that macrocyktleecognizes the
should aiso be pianar, and that tetrarashould exist as racemic G-quadruplex via hydrophobic interactions with the terminal

1.5 turn helically folded conformers with aromatic but not rigorously G-tetrad, as has been suggested for telomesgitirigand 3 is a
flat faces. The cationic side chains in position 4 of each quinoline ., clflass of G-quadruplex ligand which, owing to its three-

ri'n g of structuresl, 2, and3 confer water sollubiIiFy and potentigl dimensional helical structure, has the potential to interact with loops
sites for chargecharge or hydrogen bonding interactions with rather than primarily via the G-tetrad

D'\_‘r’?; bility of 1 bil drunlex DNA . Circular dichroism (CD) spectroscopy was used to investigate
. e('jab ! ItlgROET_s tlo_ stabi 'ZF Q-qug ruphex h Wasl INVES= " \whether new ligand& and3 exhibit any selectivity for a particular
tigated by melting analysis using the human telomeric G-quadruplex conformation. The CD spectrum (Supporting Infor-
mation) of h-telo d[A(GT,A)3G3T] in the absence of added salt

Lgniversity of CambIidge. s UMR 5248 shows a positive peak at 256 nm. The addition of macrocgcle
§ National Institute of Advanced Industrial Science and Technology. would appear to favor formation of the antiparallel structure, as
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Table 1. DNA G-Quadruplex and Duplex Stabilization by 1—4
Determined by FRET Melting Experiments (See Supporting
Information)

ATy at1uM conen (°C) concn at ATy, = 15 °C (uM)

ligand h-telo c-kit dup h-telo c-kit
1 33.8 21.4 0 0.38 0.28
2 5.2 5.8 0 5.37 >10
3 23.7 15.7 0.7 0.73 0.92
4 30.3 20.4 0 0.65 0.86
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Figure 2. FRET stabilization curves for macrocydda) and telomestatin
(b) upon binding to h-telo (black square), c-kit (red circle), and double-
stranded DNA (blue triangle).
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Figure 3. CD spectra of a 12.aM solution of h-telo d[A(GT2A)3GsT]

in Tris buffer (pH 7.4), 3 equiv of helical oligomé; and in the absence
of salt (solid line) or in the presence of 100 mM Kdashed line). The salt
induces conformational changes in the quadruplex {300 nm region)
which in turn induces a different handedness8i(850—450 region). The
240-300 region is essentially unchanged wtgis absent (not shown).

judged by the emergence of a positive peak at 294 nm. While we
recognize the need to exercise caution in relying solely upon CD

The addition of3 to h-telo did not cause significant CD spectral
changes in the 246300 nm region, whether in the presence or in
the absence of salt, suggesting tBatloes not induce a favored
quadruplex conformation contrary 1oHowever, this interpretation
must be subject to caution since CD bands belongirgjtod h-telo
overlap in this region.

The new ligands described here have shown significant potential
for potent G-quadruplex stabilization without any evidence of
duplex stabilization. The relative ease of synthesis of these
molecules makes them amenable to chemical modification to
improve affinity and tailor quadruplex selectivity. Progress along
these lines will be reported in due course.
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