CHEMBIOCHEM

Supporting Information

Solution Observation of Dimerization and Helix Handedness Induction in a Human Carbonic Anhydrase– Helical Aromatic Amide Foldamer Complex

Michal Jewginski,^[b, c] Lucile Fischer,^[b] Cinzia Colombo,^[b] Ivan Huc,^{*[b]} and Cameron D. Mackereth^{*[a]}

cbic_201500619_sm_miscellaneous_information.pdf

Supporting Information

Figure S1	NMR spectra of HCA in TRIS and phosphate
Figure S2	NMR spectra of HCA-3 in TRIS and phosphate compared to HCA
Figure S3	Intermolecular contacts in phosphate for HCA and HCA-1 identified by NMR spectroscopy
Figure S4	NMR spectra of HCA-1 in TRIS and phosphate compared to HCA-3
Figure S5	NMR spectra of HCA-2 in TRIS and phosphate compared to HCA-3
Figure S6	Intermolecular contacts in phosphate for HCA-2 identified by NMR spectroscopy
Figure S7	Analysis of compound 2 by HPLC and ESI-MS
Figure S8	Analysis of compound 2 by ¹ H NMR

Figure S1. NMR spectra of HCA in TRIS and phosphate. A) 1 H, 15 N TROSY of 300 μ M [15 N]-HCA in 50 mM TRIS pH 7.4. B) 1 H, 15 N-HSQC of 500 μ M [15 N]-HCA in 50 mM sodium phosphate pH 7.4. In both spectra the backbone amide crosspeaks are annotated with residue type and sequence number.

Figure S2. NMR spectra of HCA-**3** in TRIS and phosphate compared to HCA. A) 1 H, 15 N TROSY of 300 μ M [15 N]-HCA in 50 mM TRIS pH 8.0 without (black) and with (blue) 1.3 molar equivalents of compound **3**. B) 1 H, 15 N-HSQC of 500 μ M [15 N]-HCA in 50 mM sodium phosphate pH 7.4 without (black) and with (blue) 1.3 molar equivalents of compound **3**.

Figure S3. Intermolecular contacts in phosphate for HCA and HCA-1 identified by NMR spectroscopy. A) Region of ¹H, ¹⁵N-HSQC spectra (Figure S2B) from samples of unbound 300 μ M [¹⁵N]-HCA in phosphate without (black) and with (blue) 1.3 molar equivalents of added compound **3**. Selected crosspeaks have been annotated. B) $\Delta\delta_{H,N}$ of HCA-**3** compared to HCA, calculated as the root mean square deviation, $((\Delta\delta_H/0.14)^2+(\Delta\delta_N)2)^{0.5}$. C) Each observed amide nitrogen atom in the ¹H, ¹⁵N-HSQC is represented as a sphere on the structure of HCA (chain A from PDB ID 4LP6) and colored as in (B). The top orientation is the same as the green HCA protein in Figure 1A. D) Region of ¹H, ¹⁵N-TROSY spectra overlay (Figure S4B) of HCA-**1** (red) and the ¹H¹⁵N-HSQC of HCA-**3** (blue) in phosphate buffer. E) $\Delta\delta_{H,N}$ of HCA-**1** compared to HCA-**3**, calculated as in (B). F) Each observed amide is represented as a sphere on the structure of HCA and colored as in (E).

Figure S4 NMR spectra of HCA-1 in TRIS and phosphate compared to HCA-3. A) 1 H, 15 N TROSY of 300 μ M [15 N]-HCA in 50 mM TRIS pH 8.0 with 1.3 molar equivalents of compound 1 (red) or compound 3 (blue). B) 1 H, 15 N-HSQC of 270 μ M [15 N]-HCA in 50 mM sodium phosphate pH 7.4 with 1.3 molar equivalents of compound 1 (red) or compound 3 (blue).

Figure S5. NMR spectra of HCA-2 in TRIS and phosphate compared to HCA-3. A) ¹H,¹⁵N TROSY of 300 μ M [¹⁵N]-HCA in 50 mM TRIS pH 8.0 with 1.3 molar equivalents of compound **2** (green) or compound **3** (blue). B) ¹H,¹⁵N-HSQC of 500 μ M [¹⁵N]-HCA in 50 mM sodium phosphate pH 7.4 with 1.3 molar equivalents of compound **2** (green) or compound **2** (blue).

Figure S6 Intermolecular contacts in phosphate for HCA-2 identified by NMR spectroscopy. A) Selected region of the superposition of ¹H,¹⁵N-HSQC spectra of HCA-2 (green) and HCA-3 (blue) in phosphate buffer (from Figure S6B). B) $\Delta\delta_{H,N}$ of HCA-2 compared to HCA-3, calculated as in Figure 2B. C) Each observed amide is represented as a sphere on the structure of HCA (chain A from PDB ID 4LP6) and colored as in (B).

Figure S7 Analysis of compound **2** by HPLC and ESI-MS. A) RP-HPLC (Jasco PU-2089 pump) Macherey–Nagel Nucleodur C18 gravity column ($4.6 \times 100 \text{ mm}$, $5 \mu \text{m}$). The mobile phase was composed of 0.1 % (v/v) TFA/H₂O (solvent A) and 0.1 % TFA/CH₃CN (solvent B) with a 5-100% solvent B gradient over 15 min (t_r =8.2 min). Monitoring was performed by UV detection at 300 nm with a diode array detector (Jasco UV-2077). B) HRMS (Thermo Exactive Orbitrap) in negative mode: m/z calculated for [C₈₀H₇₁N₁₄O₂₀S]⁻: 1579.4695; found : 1579.4753.

Figure S8 Analysis of compound **2** by ¹H NMR. A) 1D ¹H NMR of compound **2** in DMSO-d6 at 300 MHz and 298 K. B) 1D ¹H NMR of compound **2** in DMSO-d6 with 1% trifluoroacetic acid at 300 MHz and 298 K.