Supporting Information

Solution Observation of Dimerization and Helix Handedness Induction in a Human Carbonic Anhydrase–Helical Aromatic Amide Foldamer Complex

Michal Jewginski, Lucile Fischer, Cinzia Colombo, Ivan Huc, and Cameron D. Mackereth
Supporting Information

Figure S1 NMR spectra of HCA in TRIS and phosphate
Figure S2 NMR spectra of HCA-3 in TRIS and phosphate compared to HCA
Figure S3 Intermolecular contacts in phosphate for HCA and HCA-1 identified by NMR spectroscopy
Figure S4 NMR spectra of HCA-1 in TRIS and phosphate compared to HCA-3
Figure S5 NMR spectra of HCA-2 in TRIS and phosphate compared to HCA-3
Figure S6 Intermolecular contacts in phosphate for HCA-2 identified by NMR spectroscopy
Figure S7 Analysis of compound 2 by HPLC and ESI-MS
Figure S8 Analysis of compound 2 by 1H NMR
Figure S1. NMR spectra of HCA in TRIS and phosphate. A) 1H,15N TROSY of 300 μM [15N]-HCA in 50 mM TRIS pH 7.4. B) 1H,15N-HSQC of 500 μM [15N]-HCA in 50 mM sodium phosphate pH 7.4. In both spectra the backbone amide crosspeaks are annotated with residue type and sequence number.
Figure S2. NMR spectra of HCA-3 in TRIS and phosphate compared to HCA. A) 1H, 15N TROSY of 300 μM [15N]-HCA in 50 mM TRIS pH 8.0 without (black) and with (blue) 1.3 molar equivalents of compound 3. B) 1H, 15N-HSQC of 500 μM [15N]-HCA in 50 mM sodium phosphate pH 7.4 without (black) and with (blue) 1.3 molar equivalents of compound 3.
Figure S3. Intermolecular contacts in phosphate for HCA and HCA-1 identified by NMR spectroscopy. A) Region of 1H, 15N-HSQC spectra (Figure S2B) from samples of unbound 300 μM 15N-HCA in phosphate without (black) and with (blue) 1.3 molar equivalents of added compound 3. Selected crosspeaks have been annotated. B) $\Delta \delta_{HN}$ of HCA-3 compared to HCA, calculated as the root mean square deviation, $((\Delta \delta_H/0.14)^2+(\Delta \delta_N)^2)^{0.5}$. C) Each observed amide nitrogen atom in the 1H, 15N-HSQC is represented as a sphere on the structure of HCA (chain A from PDB ID 4LP6) and colored as in (B). The top orientation is the same as the green HCA protein in Figure 1A. D) Region of 1H, 15N-TROSY spectra overlay (Figure S4B) of HCA-1 (red) and the 1H15N-HSQC of HCA-3 (blue) in phosphate buffer. E) $\Delta \delta_{HN}$ of HCA-1 compared to HCA-3, calculated as in (B). F) Each observed amide is represented as a sphere on the structure of HCA and colored as in (E).
Figure S4 NMR spectra of HCA-1 in TRIS and phosphate compared to HCA-3. A) 1H,15N TROSY of 300 μM $[^{15}$N]-HCA in 50 mM TRIS pH 8.0 with 1.3 molar equivalents of compound 1 (red) or compound 3 (blue). B) 1H,15N-HSQC of 270 μM $[^{15}$N]-HCA in 50 mM sodium phosphate pH 7.4 with 1.3 molar equivalents of compound 1 (red) or compound 3 (blue).
Figure S5. NMR spectra of HCA-2 in TRIS and phosphate compared to HCA-3. A) 1H,15N TROSY of 300 μM [15N]-HCA in 50 mM TRIS pH 8.0 with 1.3 molar equivalents of compound 2 (green) or compound 3 (blue). B) 1H,15N-HSQC of 500 μM [15N]-HCA in 50 mM sodium phosphate pH 7.4 with 1.3 molar equivalents of compound 2 (green) or compound 2 (blue).
Figure S6 Intermolecular contacts in phosphate for HCA-2 identified by NMR spectroscopy. A) Selected region of the superposition of 1H, 15N-HSQC spectra of HCA-2 (green) and HCA-3 (blue) in phosphate buffer (from Figure S6B). B) $\Delta\delta_{H,N}$ of HCA-2 compared to HCA-3, calculated as in Figure 2B. C) Each observed amide is represented as a sphere on the structure of HCA (chain A from PDB ID 4LP6) and colored as in (B).
Figure S7 Analysis of compound 2 by HPLC and ESI-MS. A) RP-HPLC (Jasco PU-2089 pump) Macherey–Nagel Nucleodur C18 gravity column (4.6×100 mm, 5μm). The mobile phase was composed of 0.1 % (v/v) TFA/H₂O (solvent A) and 0.1 % TFA/CH₃CN (solvent B) with a 5-100% solvent B gradient over 15 min (tᵣ =8.2 min). Monitoring was performed by UV detection at 300 nm with a diode array detector (Jasco UV-2077). B) HRMS (Thermo Exactive Orbitrap) in negative mode: m/z calculated for [C₈₀H₇₁N₁₄O₂₀S]⁻: 1579.4695; found: 1579.4753.
Figure S8 Analysis of compound 2 by 1H NMR. A) 1D 1H NMR of compound 2 in DMSO-d$_6$ at 300 MHz and 298 K. B) 1D 1H NMR of compound 2 in DMSO-d$_6$ with 1% trifluoroacetic acid at 300 MHz and 298 K.