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Selective Encapsulation of Disaccharide Xylobiose by an Aromatic
Foldamer Helical Capsule
Subrata Saha, Brice Kauffmann, Yann Ferrand,* and Ivan Huc*

Abstract: Xylobiose sequestration in a helical aromatic
oligoamide capsule was evidenced by circular dichroism,
NMR spectroscopy, and crystallography. The preparation of
the 5 kDa oligoamide sequence was made possible by the
transient use of acid-labile dimethoxybenzyl tertiary amide
substituents that disrupt helical folding and prevent double
helix formation. Binding of other disaccharides was not
detected. Crystallographic data revealed a complex composed
of a d-xylobiose a anomer and two water molecules accom-
modated in the right-handed helix. The disaccharide was found
to adopt an unusual all-axial compact conformation. A dense
network of 18 hydrogen bonds forms between the guest, the
cavity wall, and the two water molecules.

Saccharides constitute important molecular recognition
targets, yet they remain elusive and difficult to discriminate.
Indeed, they may only differ by the configuration of a single
stereogenic center, and each saccharide often exists as
different isomeric forms owing to anomerization and to
equilibria between open chain and cyclic furanose or pyra-
nose forms. Significant progress in synthetic saccharide
receptor development has been made over the years,[1]

including combinatorial approaches and screening of libra-
ries.[2] Nevertheless, the ab initio design of selective saccha-
ride receptors has remained a challenging objective except in
the case of all equatorial sugars that can be sandwiched
between aryl groups and for which tight and selective binding
has been achieved even in water.[3]

We and others have introduced foldamer-based helical
containers in which aryl groups expose their edges to a central
cavity as versatile tools for molecular recognition.[4–7] In some
designs, molecular helices possess a reduced diameter at both
ends and completely surround their guest, allowing for host–
guest interactions in all directions (Figure 1a).[5–7] Sequences

based on first principle design have been shown to tightly bind
to polyhydroxylated guests, including monosaccharides, in
organic solvents.[6, 7] Furthermore, structure elucidation
allowed for iterative improvements of the designs to reach
outstanding selectivity.[6, 7a] We now have expanded this
approach to produce a selective disaccharide receptor that
binds a dipentose, a-1,4-xylobiose 1 (Figure 1 b), whereas
binding of dihexoses is negligible. Structure elucidation
allowed us to decipher a binding mode that involves an
induced fit of the guest, which adopts an all axial conforma-
tion to match with the capsule cavity.

Sequence 3 (Figure 1d) was designed to fold into a helical
capsule following previously described principles.[5a] Energy
minimization predicts an inner-cavity volume large enough
(ca. 330 c3) to accommodate some disaccharides.[8] Its inner
rim possesses multiple hydrogen bond donors and acceptors
suitable to bind sugars in organic solvents. Furthermore, the
ovoid cavity shape hints at binding of compact sugar
conformations and not of extended or flat (for example, all-
equatorial) guests. In the design of sequence 3, terminal Q
monomers play the role of end caps that close the cavity; large
central A and H units ensure a wide-enough helix equatorial
diameter; amide protons serve as hydrogen bond donors; and
several monomers expose hydrogen bond acceptor functions
to the binding cavity, including the endocyclic nitrogen atoms
of N and A units, the hydrazide carbonyl oxygen atom of H

Figure 1. a) Representation of the encapsulation of a guest molecule
(yellow sphere) in the cavity of a helical foldamer capsule (blue tube).
b) Two possible conformations of 1,4-d-xylobiose 1. c) Color-coded
formulae and associated letters of amino acid, diamino, and diacid
monomers. The inner rim of the helix is marked by thick bonds.
d) Sequences of the ill-folded oligomer 2 including tertiary amide
bonds (T) and of capsule 3. The terminal nitro group replaces the 8-
amino-quinoline substituent.
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units,[6] and the N-oxide oxygen atom of NO units. The latter
was specifically developed for this work with the intention to
exploit the established hydrogen bonding capabilities of N-
oxides.[9]

The predictions outlined above can be made with
relatively high confidence. Thus, the challenge of constructing
an aromatic foldamer-based disaccharide receptor lay not so
much in its design. It was in fact primarily a synthetic
challenge owing to the number of monomers (the MW of 3 is
5 kDa) and their variety (seven different units) and because
of difficulties associated with coupling long sequences. Earlier
successful foldamer capsule syntheses typically entailed
extending a sequence from its narrow helical end to produce
a long chain, cone-like, helix having an amine function at the
wide end that was eventually coupled to a central diacid.[6, 7] A
limitation of that approach is that the cone-like intermediate
has a propensity to self-assemble into an anti-parallel double
helical duplex, all the more so that the sequence is long and
that the diameter is wide.[10] This property can be exploited on
purpose to form double helical containers.[11] Yet it constitutes
an obstacle to sequence elongation because of the steric
hindrance associated with the inclusion of the terminal amine
functions in a double helix. In contrast, once a full unim-
olecular capsule is formed, the reduced diameter of the
terminal Q3 segments prevents self-assembly into a double
helix:[12] sequence 3 is expected to be monomeric. Similarly,
long Qn oligomers can be coupled without difficulties.[13] To
prevent self-assembly of synthetic intermediates, we used
tertiary benzylic amides as removable disruptors of helicity
with the expectation that they would also disfavor double
helix formation. Aryl–alkyl tertiary amides have been shown
to preferentially adopt cis conformations.[14] Their use has
been proposed before to reduce steric hindrance in single

helices[15] or to disrupt aggregation in rod-like aromatic amide
oligomers.[16] We thus set to target sequence 2 as a synthetic
intermediate.

Sequence 2 possesses four removable dimethoxybenzylic
(DMB) amide substituents. We hypothesized that the tertiary
amides would prevent the self-assembly of the Q3PN2N

OHAH

precursor into a double helix and allow for its coupling to
diacid monomer Aac to produce 2. As shown in Scheme 1,
DMB groups were installed on protected naphthyridines 4
and 4a (see the Supporting Information). Sequence elonga-
tion involved the PyBOP-mediated coupling of O2N-Q3-
CO2H with the primary amine group of 5 yielding pentaamide
6. After Boc cleavage, the amine of pentaamide 7 was coupled
to the acid of 4a to give hexaamide 8. Tertiary amides were
found to be prone to base-mediated hydrolysis. The terminal
secondary amine of 8 was thus deprotected to give 9 using
TBAF in presence of succinic acid to keep the medium
slightly acidic. The coupling of 9 with the acid function of the
newly prepared naphthyridine N-oxide 10 (see the Supporting
Information) yielded heptaamide 11. Deprotection and
addition of dimer 13 gave nonaamide 14. As expected, the
1H NMR spectrum of oligomer 14 exhibits a single set of
sharp resonances reflecting the absence of undesired self-
assembly (Supporting Information, Figure S1). Teoc depro-
tection of the amine followed by the final coupling step to
diacid 16 provided the ill-folded intermediate oligomer 2. The
folded capsule 3 was eventually obtained in moderate yield on
a 40 mg scale after acidic treatment to cleave the four DMB
groups. Pure samples of 3 were produced by crystallization.

The folding of 3 into a helical capsule was evidenced in the
solid state. Single crystals suitable for X-ray crystallographic
analysis were obtained by NMR-tube layering of n-hexane
above a chloroform solution. The structure was solved in the

Scheme 1. Synthetic pathway to capsule 3 : a) PyBOP, DIEA, CHCl3, 35 88C; b) HCl 4.0m in dioxane, 25 88C; c) TBAF 1m in THF, succinic acid,
THF:DMF, 25 88C; d) TFA, CH2Cl2, 25 88C. Teoc = trimethylsilylethyl-oxycarbonyl.
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P1̄ space group (Figure 2a). Both the overall helix shape and
cavity volume (ca. 320 c3) matched well with the initial
prediction.

The binding of several disaccharides, namely d-cellobiose,
d-lactose, d-maltose, d-sucrose, and d-xylobiose, to capsule 3
was assessed in DMSO/CHCl3 mixtures (20:80 vol/vol) by
using circular dichroism (CD). This screen assumes that
binding, if it occurs, is likely to show some diastereoselectivity
with respect to P-3 or M-3. It should thus result in some helix
handedness induction detectable by CD. In this medium,
dipentose d-xylobiose 1 was the sole disaccharide to generate
a response.

Larger sugars, that is, dihexoses, did not induce any CD.
The positive CD induced by 1 was too weak to allow for
a trustworthy determination of the binding constant. How-
ever, saturation of the host took place after addition of
slightly more than 1 equiv of guest [d-1] (Supporting Infor-
mation, Figure S3). The weak CD induction thus did not
reflect a weak binding but rather a poor diastereoselectivity,
with a preference of d-1 for P-3. Host-guest complex
formation was also monitored by 1H NMR spectroscopy in
the same solvent mixture. Upon titrating 3 (250 mm) with d-1,
the initial set of resonances corresponding to free capsule 3
(Figure 3a) was replaced by three sets of signals that could all
be attributed to disaccharide–capsule complexes (Figure 3b–
d): a major set (black triangles) and two sets of weaker signals
(black squares) integrating together for almost the same
intensity as the major one. The presence of several sets of
sharp signals presumably reflects the poor diastereoselectivity
observed by CD (d-sugar in P or M helices) as well as
a possible weak discrimination of the a and b sugar anomers.
Each set of resonances account for 20 non-equivalent amide
or hydrazide protons which denotes a loss of symmetry of the
sequence upon complexing 1. Exchanges between the free

capsule and the carbohydrate–capsule complexes are slow on
the NMR timescale. Integration of the corresponding signals
thus allowed us to estimate an overall affinity constant (Ka) of
about 20 000 Lmol@1.

The complexity of the NMR spectra made it impossible to
elucidate a host–guest complex structure in solution as was
achieved previously for monosaccharides.[6] We thus turned

Figure 3. Excerpt of the amide and hydrazide resonances of the
1H NMR spectrum of capsule 3 (700 MHz, 298 K) at 0.25 mm in
a CDCl3/[D6]DMSO (80:20 vol/vol) mixture in the presence of:
a) 0 equiv; b) 0.25 equiv; c) 1 equiv; and d) 1.5 equiv of 1. * empty
host, &,~ signals of the different carbohydrate–capsule species.

Figure 2. Side views of the crystal structures of: a) P-3 ; b) and c) P-3$d-1·(H2O)2.
[21] In (a), (b), and (c) the helix appears in tube representation.

Monomers are color-coded as in Figure 1. In (a) the cavity (321 b3) is shown as a transparent yellow isosurface, whereas hydrogen bond acceptors
(oxygen atoms) of the H and NO monomers are shown as magenta and green transparent CPK spheres. In (b) and (c) xylobiose and water
molecules are shown in tube representation. In (b) the cavity (360 b3) is shown as a transparent light blue isosurface. One of the terminal
trimeric quinoline caps is slightly tilted allowing a water molecule to protrude out of the cavity. In (c) the two included water molecules are
colored in black for clarity, whereas the 18 hydrogen bonds found in the complex are shown as grey dashes. d) Zoom on the cavity of P-3$d-
1·(H2O)2 showing the binding mode between the xylobiose, the water molecules, and the inner wall of the foldamer. The disaccharide, the water
molecules, and those heterocycles that interact with them are shown in tube representation. Non-polar hydrogens have been removed. Green
dashed lines indicate hydrogen bonds. Details of these hydrogen bonds (distances, angles) can be found in the Supporting Information. In all
representations, isobutoxy side chains and solvent molecules were omitted for clarity. e) Numbering of the units used in (d).
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towards X-ray crystallography. Racemic crystallography has
proven very efficient in our hands to crystallize saccharide
host–guest complexes,[6, 7c,17] but it could not be implemented
here owing to the unavailability of l-1. Fortunately, single
crystals of P-3$a-d-1, that is, the helix handedness that
prevails in solution, were obtained by the successive diffusion
of first n-hexane then diethyl ether in a chloroform/DMSO
solution (99:1 vol/vol) initially containing racemic P/M-3
capsule with d-1 as a guest. Crystals diffracted at 0.86 c
resolution and the structure was solved in the chiral space
group P212121. The structure revealed the presence of
a molecule of a-d-1 and of two water molecules in the
cavity of P-3 (Figure 2 b–d). In its bound conformation, a-d-
1 has all hydroxy groups in an axial position except the
a anomeric OH (Figure 1b), instead of the equatorial
conformation previously observed for this sugar bound to
a protein.[18] This unexpected compact conformation was
interpreted as an induced fit imposed by the shape of the
cavity, which is probably not complementary to the most
stable conformer of the guest. Out of the 18 hydrogen bonds
observed in the quaternary complex P-3$d-1·(H2O)2, only
nine consist of direct contacts between the sugar and the
foldamer. Nine additional bonds are mediated by the water
molecules which bridge the guest to the cavity wall. Two
hydrazide carbonyl groups and one N-oxide function are
involved in hydrogen bonding. The superposition of the
aromatic backbones of 3 and 3$d-1·(H2O)2 did not reveal
significant differences of helical backbone folding except
a small gap between one distal Q3 segment and the adjacent
naphthyridine that allows space for the inclusion of a water
molecule. The cavity space was found to be slightly larger in
3$d-1·(H2O)2 (ca. 360 c3) than in 3 (ca. 320 c3). The volume
of the guests 1·(H2O)2 (ca. 222 c3) leads to a packing
coefficient of 0.62, a value close to that of other helical
capsule–monosaccharide host–guest complexes.[6]

It was not possible to assess the binding of dipentoses
other than d-1 for lack of commercial availability. Molecular
modeling revealed that dihexoses d-sucrose and d-cellobiose
were not well accommodated in the cavity because the helical
backbone folding was perturbed by the presence of the guest.
This could be a consequence of the overall shape of the guests
rather than of their size as acceptable packing coefficients of
0.68 were predicted for both dihexoses. Unlike for mono-
saccharides, very few synthetic receptors for disaccharides
have been reported.[1f, 3b, 19] Reports on oligosaccharide recog-
nition are even fewer.[20] None of the earlier studies provided
detailed structural information on disaccharide–receptor
complexes. The crystal structure of 3$d-1·(H2O)2 reported
herein is the first structure of an artifical receptor–disacchar-
ide host–guest complex.

In conclusion, we have prepared a foldamer-based helical
capsule with a cavity large enough to accommodate xylobiose.
The synthesis of the nineteen-unit-long sequence required
new approaches to overcome undesired aggregation into
double helices. The encapsulation of xylobiose validates our
approach based on first principle design of artificial receptors.
The foldamer possesses a slightly larger-than-necessary cavity
that could be the starting point of a structure-based iterative
reduction of cavity size and increase of shape complementar-

ity via mutations and deletions in the sequence, as previously
demonstrated for other guests.[6] Advanced predictive com-
putational tools are desirable at this stage to guide initial
sequence design and subsequent iterative modifications and
accelerate receptor optimization.
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